
Novel Test Point Insertion Applications in LBIST

by

Yang Sun

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

Dec 11, 2021

Keyword: Artificial Neural Network, Test Point Insertion, Logic Built-in Self-Test,

Test Power

Copyright 2021 by Yang Sun

Approved by

Spencer K. Millican, Chair, Assistant Professor of Electrical and Computer Engineering

Vishwani D. Agrawal, Professor Emeritus of Electrical and Computer Engineering

Adit D. Singh, Godbold chair, Professor of Electrical and Computer Engineering

Ujjwal Guin, Assistant Professor of Electrical and Computer Engineering

ii

Abstract

Pseudo-random stimulus is an established industry practice due to its simplicity and

significant fault coverage. However, when applied to modern circuits, pseudo-random stimulus

can fail to excite and observe random pattern resistant (RPR) faults. These faults become more

common as logic circuitry becomes more complex, which naturally occurs with technology scaling.

Many techniques attempt to detect RPR faults using logic built-in self-test (LBIST), including (1)

modifying the pattern generator to create less “random” stimulus or (2) modifying circuits to make

RPR faults more easily tested with random stimulus. This latter method, known as test point (TP)

insertion (TPI), is frequently used in industry due to its ability to be implemented on post-synthesis

circuit netlists with minimal effort from circuit designers. Optimal TPI is known to be an NP-hard

problem, thus current TPI methods use heuristics to overcome computational barriers. Artificial

neural networks (ANNs) are computing paradigms that present opportunities to increase solution

quality and overcome computational barriers imposed by heuristic algorithms.

This dissertation studies ANN TPI algorithms. The methods include collecting training

data, training ANNs, and analyzing ANNS to evaluate TPs. Experiments compare ANN-based TPI

methods against equivalent heuristic algorithms in terms of circuit testability and computation time.

Experimental results show ANN-based TPI can achieve high fault coverage with less execution

time.

Another concern for design-for-test (DFT) engineers is high test power since high-power

tests can cause false failures and circuits become less reliable when large and instantaneous power

dissipation causes overheating. Thus, techniques must reduce test power while keeping fault

coverage acceptable. Control TPs can reduce switching activity and keep lines stable, thus decrease

power consumption during test. However, control TPs may also cause fault coverage to decrease,

iii

thus some strategies must be used to balance power and fault coverage. This dissertation proposes

power-targeting TPI. The method uses multi-phase strategies in power-targeting TPI to minimize

the negative impacts on fault coverage. Experiments compare different numbers of TPI phases and

finds the best number of TPI phases, and experimental results show power-targeting TPI can

reduce test power while keeping fault coverage high.

iv

Acknowledgments

Firstly, I am very grateful to my advisor Prof. Spencer K. Millican for his guidance. He

inspired me a lot whenever I had problems with my research work. I also appreciate my other

committee members: Prof. Vishwani D. Agrawal, Prof. Adit D. Singh, and Prof. Ujjwal Guin.

They gave me lots of suggestions and helpful comments, so that I can modify and improve my

dissertation research. Besides these professors, I would like to thank my team members, who

helped me a lot in my research field. I couldn’t have made a success in my research and other

projects without their help. Last but not the least, I want to thank my family members and friends,

who give support with their love during my whole study in Auburn.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents .. v

List of Figures .. viii

List of Tables ... xi

List of Abbreviations .. xii

Chapter 1 Introduction .. 1

Chapter 2 Background .. 5

2.1 TP Architectures ... 5

2.2 TP Selection Architectures ... 7

2.3 TPI Algorithms ... 8

2.4 Modern Targets for TPI .. 14

Chapter 3 Introduction to ANNs ... 17

3.1 ANNs history .. 17

3.2 ANNs structures .. 17

3.3 Training ANNs.. 19

3.4 ANN applications.. 19

Chapter 4 ANNs TPI Targeting Stuck-at Fault Coverage .. 21

4.1 Introduction to the Stuck-at Fault Model .. 21

4.2 Proposed Method .. 21

4.3 ANN Input .. 22

4.4 Output Label ... 25

vi

4.5 Training Data Generation ... 25

4.6 Training ... 27

4.7 ANN TPI Flow .. 27

4.8 Experiment Results ... 28

4.9 Conclusion .. 37

Chapter 5 ANNs TPI Targeting Transition Delay Fault Coverage... 38

5.1 Introduction to the Transition Delay Fault Model .. 38

5.2 Proposed Method .. 39

5.3 Input Features.. 40

5.4 Output Label ... 40

5.5 Training Data Generation ... 41

5.6 Training ... 42

5.7 Experiment Results ... 42

5.8 Conclusion .. 47

Chapter 6 Developments in ANN TPI .. 48

6.1 ANN Input Feature Development ... 48

6.2 ANN Output Label Development ... 48

6.3 Experiment Results ... 49

Chapter 7 Test Power Reduction through Test Point Insertion .. 59

7.1 Introduction ... 59

7.2 Background ... 61

7.3 TPI for Power Reduction .. 64

7.4 Experiment Results ... 66

vii

7.5 Conclusion and Future Directions .. 75

Chapter 8 Conclusion and Future Work ... 76

Bibliography ... 77

viii

List of Figures

Figure 2.1: Logic-level implementations of control, inversion, and observe TPs. 5

Figure 3.1: An example of a) a single neuron, and b) the ANN prototypical structure 18

Figure 4.1: A sub-circuit size is represented by L levels. “X” marks the TP location. 23

Figure 4.2: A conversion of a sub-circuit to the format of no more than two fan-in/fan-out per gate.

 .. 24

Figure 4.3: The ANN input features are CC, CO, Gate type. ... 25

Figure 4.4: ANN TPI Flow. .. 28

Figure 4.5: A plot of training time’s impact on ANN accuracy. .. 31

Figure 4.6: A plot on the number of neuron’s on ANN accuracy. .. 32

Figure 4.7: A plot of training data size on ANN accuracy. .. 33

Figure 4.8: ANN and conventional TPI targeting SAF in SAF coverage comparison. 36

Figure 4.9: ANN and conventional TPI targeting SAF in time comparison. 37

Figure 5.1: ANN and conventional TPI targeting TDF in TDF coverage comparison. 46

Figure 5.2: ANN and conventional TPI targeting TDF in SAF coverage comparison. 46

Figure 5.3: ANN and Conventional TPI targeting TDF in time comparison. 47

Figure 6.1: Increasing ANN training data typically increases ANN accuracy, but also increases

training time. ... 51

Figure 6.2: Increasing ANN complexity can decrease ANN error, but training time also increases.

 .. 52

Figure 6.3: Different sub-circuit size ANN TPI and conventional TPI in SAF coverage comparison.

 .. 55

ix

Figure 6.4: SAF targeting conventional and ANN TPI may not increase SAF coverage compared

to their TDF targeting counterparts. ... 55

Figure 6.5: Different sub-circuit size ANN TPI and conventional TPI in TDF coverage comparison.

 .. 56

Figure 6.6: TDF targeting conventional and ANN TPI may not increase TDF coverage compared

to their SAF targeting counterparts. ... 57

Figure 6.7: Conventional TPI and different sub-circuit ANN TPI in time comparison. 58

Figure 7.1: Control TPs can reduce switching activity, but also block faults. 63

Figure 7.2: Flow chart of multi-phase TPI.. 66

Figure 7.3: Power-targeting TPI and conventional fault-targeting TPI in SAF coverage comparison.

 .. 69

Figure 7.4: Power-targeting TPI and conventional fault-targeting TPI in average power

comparison. ... 70

Figure 7.5: Power-targeting TPI and conventional fault-targeting TPI in peak power comparison.

 .. 70

Figure 7.6: The number of phases impacts SAF coverage substantially. 72

Figure 7.7: More TPI phases, the benefits to average power degrade. ... 72

Figure 7.8: More TPI phases, the benefits to peak power degrade. .. 73

Figure 7.9: The SAF coverage of power-targeting TPI and conventional fault-targeting TPI in three

phases. ... 74

Figure 7.10: The average power of power-targeting TPI and conventional fault-targeting TPI in

three phases. .. 74

x

Figure 7.11: The peak power of power-targeting TPI and conventional fault-targeting TPI in three

phases. ... 75

xi

List of Tables

Table 4.1: Training and Evaluation Benchmarks for TPI ... 30

Table 4.2: ANN TPI and Conventional TPI Targeting SAF Experimental Results 35

Table 5.1: Train Benchmarks for ANN TPI Targeting TDF .. 44

Table 5.2: ANN TPI and Conventional TPI Targeting TDF Experimental Results 44

Table 6.1: Train Benchmarks for ANN TPI ... 50

Table 6.2: Different sub-circuit size ANN TPI and Conventional TPI Experimental Results 54

Table 7.1: Power-Targeting TPI Experimental Results .. 68

xii

List of Abbreviations

COP

Controllability Observability Program

CRF

Cost Reduction Factor

DFT

Design for Test

ECO

Engineering Change Orders

EDA

Electronic Design Automation

LBIST

Logic Built-in Self-Test

ML

Machine Learning

MPTI

Multi-Phase TPI

PDF

Path Delay Fault

PRPG

Pseudorandom Patten Generator

RPR

Random Pattern Resistant

SAF

Stuck-at Fault

SCOAP

Sandia Controllability/Observability Analysis

Program

SoC

System-on-Chip

TDF

Transition Delay Fault

TP

Test Point

TPI

Test Point Insertion

1

Chapter 1

Introduction

Modern electronics in critical and high-assurance applications (e.g., self-driving cars,

aerospace, and medical devices) have strict reliability requirements. Since defective devices create

economic loss or catastrophic loss-of-life, manufacturing tests must be credible in detecting and

preventing faulty behavior. To ensure the quality and correct operation of electronic products, tests

must be done both during R&D (design verification & classification) and later in production

(production/manufacturing testing). Design-for-test (DFT) describes the circuit design processes

that make sure the required testing is possible to do, and preferably even easy to do.

DFT consists of integrated circuit (IC) design techniques that makes testing a chip possible

and cost-effective by adding additional circuitry to the chip, adds testability features to a hardware

product design to improve the controllability and observability of internal nodes. DFT makes it

easier to develop and apply manufacturing tests to the designed hardware. DFT techniques include

scan chains and built-in self-test (BIST) circuitry.

Logic built-in self-test (LBIST) [1] is a BIST technology in DFT that is commonly used

for both manufacturing tests and post-manufacturing reliability checks [2]. LBIST uses on-chip

stimulus generators, i.e., pseudorandom pattern generators (PRPGs) [3], [4] to stimulate circuit

inputs and set circuit states while circuit outputs and states are observed. When complementing

conventional test methods, LBIST can significantly increase fault coverage while decreasing test

application time. With embedded LBIST, devices become testable with minimal functional

interruption by saving the circuit state, applying test enable/disable signals, and then reloading the

circuit state to resume the normal function.

2

A major challenge for LBIST is detecting random pattern resistant (RPR) faults [5]. RPR

faults manifest in logic with many inputs when few input combinations can excite certain logic

paths, and therefore pseudo-random tests often fail to excite and observe RPR faults. The

prototypical example of an RPR fault is the output of a large logic gate; the probability of the

output of a 32-input AND gate being logic-1 and exciting a stuck-at-0 fault at it’s output is

2−32 (presuming all AND gate inputs are equally likely to be logic-0 or logic-1), which implies

more than one billion pseudo-random patterns may be needed to excite the fault. Under the

presence of RPR faults, applying LBIST becomes time-consuming and power-intensive, which

means test costs increase and circuit reliability degrades.

A method to improve LBIST performance is modifying circuits with test points (TPs). TPs

change circuit values or observe values in a circuit, thus making the detection

of RPR faults easier. Test point insertion (TPI) techniques find high-quality TPs locations which

improve fault coverage or reduce the required number of test patterns. Using TPs to increase

random pattern effectiveness is well established in literature [6]–[8], but TPI methods still strive

to improve their computational performance. Since the concept of TPI was proposed by Hayes and

Friedman [6] in 1974, numerous algorithms have improved TPI performance by using fault

simulation to classify RPR faults and propose TP locations [7] by using automatic test pattern

generation (ATPG) [9], by using gradient optimizing techniques [8], and by incorporating many

other nuances and using a variety of algorithms. All of these methods are less-than-optimal, which

is necessary because optimal TP placement is a known computationally-infeasible problem [10].

Therefore, it is imperative to continue exploring TPI methods that select higher-quality TPs with

less computational resources, since reduced execution time translates to increased TPI efforts,

which in turn translates to higher-quality TPs being inserted into a circuit in a given amount time.

3

Unfortunately, the computational complexity of the algorithms that implement these techniques

increases faster than the increasing size of logic circuits [10]. Since computational resources are

in high demand by several electronic design automation (EDA) tool users during circuit

development, designers must sacrifice testability or other circuit qualities if EDA engineers do not

increase algorithm efficiency.

New computing methods, like artificial neural networks (ANNs), can increase algorithm

efficiency and keep LBIST quality high. ANNs can solve complex problems, like image and

speech recognition, and they can significantly increase the quality of existing algorithms while

simultaneously decreasing computation time. Recently, ANNs have been applied to several EDA

problems with noteworthy success [11], [12], but applying ANNs to DFT problems is in its infancy.

Another major challenge for LBIST is excessive test power. Excessive power not only

discourages circuits in portable environments but also causes overheating which degrades

performance and reduces chip life. Beyond chip functionality, excessive power during test

increases manufacturing costs by requiring more expensive chip packaging or by reducing yield.

During wafer test, wafer probes have current limits, and high switching activity during test

increases power instability; this instability changes logic states and causes false failures, thus

reducing yield. Existing TPI methods may reduce this high switch activity by inserting control TPs,

but it may also come at the cost of reduced fault coverage. A new TPI procedure should be explored

to reduce test power without affecting test quality, and TPs can be inserted after finding test power

issues during silicon bring-up.

This dissertation explores using TPs to improve LBIST performance. Chapter 2 gives a

survey on TP architectures and TPI methods and describes TPI methods for different purposes and

their weakness. Chapter 3 introduces ANNs’ history, structures, training methods and applications.

4

Chapter 4 and Chapter 5 present the methods of ANNs TPI targeting stuck-at fault (SAF) and

targeting transition delay fault (TDF), respectively, including ANN creation, training and

evaluation on SAT/TDF effectiveness and execution time. Chapter 6 futher develops the ANN for

TPI, e.g., by exploring ANN input features, output labels, and a more detailed ANN parameters

exploration. Chapter 7 demonstrates a procedure of power-targeting TPI with a multi-phase

strategy and compares it against conventional fault-targeting TPI on SAF coverage, average power,

and peak power.

5

Chapter 2

Background

2.1 TP Architectures

TPs are circuit modifications that change or observe circuit functions during test but do not

change the circuit function when disabled [6], [7]. Conventional TPs are categorized into two types

[13]: control TPs and observe TPs (as shown in Figure 2.1 (a), (b), and (d)). Control TPs are

typically implemented using OR gates for control-1 TPs or AND gates for control-0 TPs (and

NAND/NOR gates can be used at the output of inverters) [14]. During test, a test enable pin forces

lines to their controlled values [15]. While not under test, this test enable pin is disabled and the

circuit function does not change. The goal of control TPs is to increase the probability of exciting

faults in a circuit and to make faults easier to observe by creating propagation paths to circuit

outputs. Observe TPs change circuit observability by inserting fan-outs to circuit outputs, which

makes faulty values on lines easily observed [16].

TETE

a) Control-0 TP b) Control-1 TP

TE

c) Inversion TP d) Observe TP

Figure 2.1: Logic-level implementations of control, inversion, and observe TPs.

The source of test enable and the output for observe points can either be a pin or a scannable

latch [14]. Although test enable is most often modeled as a pin, implementing it as a circuit pin is

6

impractical given the high cost of circuit pins. Instead, additional TP “pins” are typically

implemented as the outputs and inputs of scannable latches since a large circuit with many TPs

and (latch-implemented) TP pins requires large area overhead. There are numerous articles on

reducing TP pin/latch area overhead whilst using TP pins selectively to increase fault coverage,

which is surveyed in Section 2.2.

Although effective at increasing SAF coverage, both control and observe TPs have

detriments, hence TPI methods must carefully select TP locations and types. Since control TPs

force lines to ‘0’ or ‘1’ when active, their controlled line can only be a single value when the TP

is active: this prevents one SAF on the line from being excited. Additionally, active control TPs

block the transmission of excited faults through the controlled line. Although observe TPs do not

block faults like control TPs, osbserve TPs cannot detect RPR faults which are difficult to excite.

In contrast to control TPs, inversion TPs use inversions to change line values during test

[17]–[21]. Inversion TPs are made with XOR gates and a test enable pin (shown in Figure 2.1(c)):

when the test enable pin is active, the XOR gate becomes an inverter; otherwise the XOR gate acts

as a buffer. In contrast to conventional control TPs which force lines to values, inversion TPs invert

signal probabilities, i.e., if a line has an 80% probability of being logic-1, the line will have a 20%

probability of being logic-1 with an active inversion TP. Because active inversion TPs do not force

a single value, both stuck-at-0 and stuck-at-1 faults can be excited on active TP locations.

Additionally, faults can propagate through inversion TPs to circuit outputs (unlike control TPs

which block faults from propagating through) [21]. However, inversion TPs add more propagation

delay, power, and overhead compared to control TPs [21], [22]. Additionally, RPR faults may

require values to be forced to optimally increase fault coverage [21] that inversion TPs cannot

perform.

7

2.2 TP Selection Architectures

Although TPs can significantly improve fault coverage, they can create significant area

overhead, which in turn increases production costs and reduces yields due to larger die areas and

fewer dies per wafer [23]. One study found chip area increased by 2.68% when using logic BIST,

and TPs constituted 43% of this area increase [24]. It is therefore important to reduce the area

overhead of TPs whilst keeping fault coverage high.

To reduce TP area overhead, some methods proposed sharing flip-flops or other existing

circuit signals to reduce TP-controlling hardware [13], [17], [24]–[28]. Youssef et al. [13] and

Nakao et al. [25] proposed sharing a single flip-flop for multiple test enable signals, which reduced

the number of flip-flops that were required to implement control points. Yang et al. [24], [27]

found more than half of TPs inserted were control points, so replacing dedicated test enable flip-

flops with existing functional flip-flops reduced area overhead: suitable functional flip-flops could

be found in each TP’s fan-in region with a short distance from the control TP. Additionally, the

test enable signals were only active in the test mode since the test enable signal was generated

based on latch value combinations that could never occur in the functional mode, i.e., unused states

of a finite state machine. Muradali et al. [26] proposed a self-drive TP that used test enable signals

created from gate outputs already existing in the circuit, which eliminated the test enable signal

generation. Similar to [26], [17] used pre-existing signals for test enable without the need for extra

registers. Chang et al. [28] used controllability don’t-cares to generate TP activation signals instead

of a global test enable signal, which generated test enable signals locally and allowed TPs to be

randomly activated: these controllability don’t-cares were constant values in functional mode (i.e.,

circuit states which were accessible only through scan) and thus could only change values in test

modes.

8

Other studies proposed reducing the number of TPs needed through various means.

Basturkmen et al. [29], Tamarapalli et al. [30] partitioned circuit tests into multiple phases, and

sub-sets of control TPs were activated during certain phases. This provided greater control over

the interaction between control TPs and helped reduce the total number of TPs needed to obtain

adequate fault coverage.

2.3 TPI Algorithms

TPI algorithms iteratively select TPs amongst a list of TP candidates: each iteration, the

TP which increases the fault coverage the most whilst not violating other constraints (e.g., fault

coverage, power, delay, etc.) is selected. Optimal TP placement in circuits with reconvergent

fanouts is a known NP-hard problem [31], [32], thus most TPI approaches use heuristics to select

TP locations, i.e., solve problem in a faster way by sacrificing optimality and accuracy.

Many TPI algorithms have been proposed in literature, and most algorithms performed the

following steps to insert a single TP. First, fault simulation or approximate testability measured

identified RPR faults. Second, candidate TPs were evaluated for their impact on fault coverage.

Third, the TP with the highest positive impact on fault coverage was inserted into the circuit. This

process was repeated until the number of desired TPs was inserted or the estimated fault coverage

reached a pre-designated limit.

 TPI Computational Difficulties

The challenge of TPI is placing the fewest number of TPs while maximizing fault coverage.

Each TP requires logic circuitry, which in turn creates undesirable overheads: static and dynamic

power, delay, and non-functional circuit area. Designers typically allocate budgets to TPs (and

other DFT hardware), thus TPs must increase fault coverage to acceptable levels under these

budgets.

9

Selecting optimal TP locations (and many other DFT problems) is a known NP-hard

problem [32], thus existing TPI methods relied on heuristic approaches to select TP locations.

Inserting 𝑇 TPs into a circuit among 𝑇′ candidate TPs creates 𝐶(𝑇′, 𝑇) possible TP choices and

finding the fault coverage impact of a choice requires computationally-intensive fault simulation.

TPI heuristics address this by replacing fault simulation with less accurate fault coverage

estimations [33], [34] and using greedy-algorithm approaches. The most common approach is

iterative [33], [21] and [35]: the algorithm evaluates candidate TPs one at a time to find the one

which one increases fault coverage the most, inserts it, and repeats this process until no more TPs

are desired or needed.

Unfortunately, the computational complexity of iterative TPI grows faster than available

computing resources. To insert a single TP, iterative TPI algorithms require evaluating every

candidate TP, and the number of candidate TPs in a circuit is proportional to the size of the circuit

(i.e., one or more candidate TPs can exist on every circuit line). Additionally, the complexity of

TP-evaluating heuristics is linearly proportional to circuit size, and as circuit sizes increase, more

TPs are needed to increase a circuit’s fault coverage to acceptable levels, presumably at a rate

linearly proportional to the circuit size (i.e., if the circuit size is doubled, meeting fault coverage

goals requires twice as many TPs). Therefore, if circuit size grows by 𝑆, TPI complexity grows by

𝑆 ⋅ 𝑇 ⋅ 𝑇′ . Presuming computer speeds increase with circuit complexity (i.e., algorithm

performance increases at a rate of 𝐶), TPI time will grow at a rate of 𝑆 ⋅ 𝑇 ⋅ 𝑇′/ 𝑆 = 𝑇 ⋅ 𝑇′.

 TPI Using Simulation

Using fault simulation to find undetected faults and then inserting TPs to detect these faults

is a straightforward method of TPI. Iyngar et al. [36] inserted control TPs on gate outputs where

faults were not excited while inserting observe TPs at the input of gates which blocked propagation.

10

Touba et al. [10] used backward path tracing to identify sensitized paths from undetected faults

and selected a set of TPs for enabling the undetected faults to be detected. Ramakrishnan et al.

[37], Menon et al. [38] used control TPs on undetected fault sites to sensitize a path to undetected

faults in sequential circuit.

Several methods [29], [30] used probabilistic fault simulation to guide TP placement

combined with greedy heuristics. Probabilistic fault simulation performed regular logic simulation

to find signal probabilities and faults that were propagated in the circuit, and then used these

probabilities to predict the probability any fault would be detected at a given location [30].

Tamarapalli et al. [30] used this method combined with a divide-and-conquer technique:

probabilistic fault simulation was performed in phases, and at the end of each phase, TPs were

inserted to target faults with the lowest detection probability. Basturkmen et al. [29] improved

memory usage and TPI CPU time whilst marginally sacrificing TPI accuracy: instead of using

logic simulation to determine all faults which could be detected on each circuit line (and the

probability of each fault being detected), a representative of all faults at each fan-out location was

chosen in order to reduce the number of faults to consider during TPI.

 TPI Using Approximate Testability Measures

Fault simulation accurately quantifies fault coverage, but its computation complexity (in

terms of CPU time and memory) is infeasible for modern circuits: to overcome this, numerous

studies replace fault simulation with approximate testability measures, such as the Sandia

Controllability/Observability Analysis Program (SCOAP) [39] and the Controllability

Observability Program (COP) [40]. SCOAP is a linear complexity algorithm (relative to the

number of logic gates in a circuit to analyze) which estimates the number of circuit inputs needed

to force a logic-0/1 on a line, i.e., the Controllability (𝐶𝐶). Using these values, SCOAP can then

11

estimate the Observability (𝐶𝑂) of a line, which is the number of inputs that must be set to

propagate a faulty value on a line to an observable output. SCOAP also includes the depth of a line

in its controllability and observability estimations. Alternatively, COP predicts the probability a

line will be logic-0/1 and the probability a line’s value will be observed at a circuit output

presuming random stimuli is applied to circuit inputs. COP values can directly be used to predict

the probability of a fault being detected: 𝐶𝐶 ∗ 𝐶𝑂 for stuck-at-0 faults and 𝐶𝐶 ∗ (1 − 𝐶𝑂) for

stuck-at-1 faults, i.e., the probability a line is excited to the line’s value is observed at a circuit

output. Controllability and observability measures can therefore be used to identify hard-to-control

and hard-to-observe locations in a circuit, and they can be used to predict the current fault coverage

(with or without a TP) of a circuit without performing fault simulation. TPs can then be inserted

based on this information.

Compared against exact fault simulation, testability measurements take substantially less

time to calculate but lose accuracy for circuits with many reconvergent fanouts. However,

experiments have suggested approximate testability measurements can be accurate enough for use

in TPI for large designs [41]. Therefore, many TPI methods from literature [33], [41]–[45] used a

cost function to estimate a TP’s quality, with a typical example [42] provided below: 𝐹 is a set of

faults, and 𝑃𝑑𝑗
 is the probability the fault 𝑗 is detected (calculated using COP).

𝑈 =
1

|𝐹|
∑

1

𝑃𝑑𝑗
∀𝑗∈𝐹 , 𝑃𝑑𝑗

= {
𝐶𝐶 ∗ 𝐶𝑂, 𝑓𝑜𝑟 𝑠𝑡𝑢𝑐𝑘‒ 𝑎𝑡‒ 1 𝑓𝑎𝑢𝑙𝑡

𝐶𝐶 ∗ (1 − 𝐶𝑂), 𝑓𝑜𝑟 𝑠𝑡𝑢𝑐𝑘‒ 𝑎𝑡‒ 0 𝑓𝑎𝑢𝑙𝑡
 2.1

Cost functions, such as 𝑈 , are used as indicators of circuit testability, and many TPI

algorithms attempt to maximize such cost functions during TPI. In this example, the value of

𝑈 changes when a TP is inserted, and the difference in 𝑈 before and after a TP is inserted is called

the actual cost reduction (ACR) [42]. Gradient calculations [42] can select TPs with the largest

ACR, but the computational complexity of finding the ACR for every TP is too high and

12

unpractical for modern circuits [41]. Therefore, the concept of a cost reduction factor (CRF) is

introduced to approximate ACRs [45]. The algorithms which use CRFs and ACRs typically

perform as follows: first, controllability and observability are calculated using an approximate

testability measure, e.g. COP or SCOAP; second, the CRF/ACR for each TP in a set of candidate

TPs is calculated, and TPs with a CRF/ACR below a given threshold are discarded; third, the ACR

for remaining candidate TPs is calculated; lastly, the TP with the largest CRF/ACR is inserted.

When using a cost function to evaluate TPs, studies added nuances to select superior TPs

or to reduce TPI CPU time. Bist et al. [43] selected TPs whose impact on timing slack and fault

coverage were smaller and larger than a given threshold, respectively. Both Tsai et al. [41] and

Bist et al. [33] proposed a hybrid cost reduction: after a TP was inserted, only faults with a large

change in 1 𝑃𝑑𝑓
⁄ had their 1 𝑃𝑑𝑓

⁄ value recalculated using fault simulation (with other faults being

calculated with testability analysis); the rational for this was the large changes in a CRF may be

inaccurate. Nakao et al. [44] proposed three strategies for accelerating CRF-based algorithms: they

removed TPs with redundant TPI-effective regions (i.e., regions where the same controllability

(for control TPs) or observability (for observe TPs) were changed, chose the TP with the highest

CRF (i.e., did not calculate an ACR), and reduced candidate TPs by selecting the first TP found to

reduce the cost function (instead of calculating the ACR or CRF for all candidate TPs).

Beyond COP and SCOAP, other methods used additional/alternative cost functions or

introduce additional constraints. Youssef et al. [13] and Gerstendörfer et al. [46] identified RPR

faults using COP and created fault sectors: RPR faults were sorted by ascending logic levels, then

control TPs targeted faults in ascending order and observation TPs targeted faults in descending

order; this prevented the same fault being targeted by the same TP, which reduced the number of

TPs required. Gerstendörfer et al. [46] used test counts (TCs) to complement COP-based TPI: the

13

TC of a line was the fewest number of tests that must pass through the line such that all faults in

its fan-in cone would be tested, and TPs were selected in order of the most tests that must pass

through the TP location. Geuzebroek et al. [8] proposed several cost functions using one or

multiple test analysis measurements (COP, SCOAP, or TC): TPI was split into multiple stages,

where each stage selected a cost function to target the current hardest test problem, i.e., detecting

RPR faults, reducing test vectors, or a combination of the two. He et al. [47] [48] used an efficiency

equation for TPs that evaluated the size of a TP fan-out/fan-in cone-of-influence and the number

of undetected faults in this cone, which in turn was used to pick the TP with the highest efficiency.

An estimation metric was then used to approximate the final area overhead and test coverage

without TP insertion and synthesis. Chen et al. [49] proposed a new conditional testability measure

to overcome COP’s inability to account for reconverging fan-outs, thus increasing the accuracy of

calculated cost functions.

Many methods incorporated non-fault coverage information (e.g., timing violations) into

their cost functions [43] or efficiency equations [48], which are further discussed in the following

sections.

 TPI Using Multiple Measures

Some approaches utilized both fault simulation and testability measures to increase TP

quality [50]–[52]. Sethuram et al. [50] reduced test vector counts and test generation time by

considering layout and timing information for observe TPs. The cost function of an observe TP

was the product of the total number of independent faults (i.e., faults which cannot be

simultaneously detected by any single pattern) in the fan-in cone of the observe TP (which was

found through fault simulation) and the minimum number of controlled primary inputs needed to

propagate the independent faults to the TP location (estimated using SCOAP). Acero et al. [51]

14

and Moghaddam et al. [52] performed COP and fault simulation to calculate fault testability,

propagated faults, and faults blocked by control TPs: a control TP cost function was composed of

the controllability of blocked faults, and the cost function of observation TPs composed of

observability of unobserved faults.

2.4 Modern Targets for TPI

Modern TPI not only targets increasing SAF coverage, but also considers extra constraints

imposed by modern technologies, e.g., increasing delay fault coverage, reducing test power,

reducing timing impacts. These constraints make TP selection much more difficult than before,

but addressing them improves circuit performance [14].

 Path Manipulation to Increase Path Delay Fault Coverage

A path delay fault (PDF) [53] occurs when any path’s delay exceeds a circuit’s designed

clock speed, and PDFs model defects that cause cumulative propagation delays along a circuit path

that exceed the circuit’s specifications. Unlike SAFs, PDFs are defined by their environment: a

PDF exists only within a certain range of operational clock speeds. PDFs are tested using a set-up

vector to create the preconditions for a transition, and a second trigger vector to initiate the

transition. Using specialized test hardware, a clock period greater than the operational clock period

can be used to create the set-up vector and to apply the trigger vector, but the operational clock

period must be applied after the trigger vector to properly capture a slow transition along a path.

If the target output has not changed from its value after the set-up vector, then the circuit is faulty.

There are three problems associated with PDFs, which are problems TPs have attempted

to address. First, the number of paths (and number of PDFs) in practically-sized circuits is too

large for test tools to handle [54]. Second, the number of tests needed to detect all PDFs is too

large [55]. Third, many PDFs in practical circuits are not testable [56]. To remedy this, TPs can

15

divide full paths into sub-paths, thus making paths easier to test and reducing the number of paths

[57]. Additionally, it is easier to generate tests for shorter sub-paths compared to full-sized paths

[57].

TPI methods have incorporated these observations into cost functions that represent the

number of paths in a circuit (i.e., the TP that reduces the total number of paths in the circuit is

iteratively chosen) [57]–[59]. Pomeranz et al. [58] used test point to divide the set of paths into a

subset paths and reduce the number of paths to be tested.directly. Tragoudas et al. [57] added an

additional constraint to the above cost function, i.e., the clock speed of the circuit under test: if a

TP reduced the longest path in the circuit, the clock speed during test could be increased, thus

decreasing test application time. Uppduri et al. [59] targeted non-robust-dependent faults (faults

in functionally sensitize paths) [60], which reduced the fault set, thus reducing the number of TPs.

 Test Power Reduction

The power consumption of digital systems is considerably higher in a test mode compared

to functional modes. This is because during normal circuit operation, a relatively small number of

flip-flops change their value each clock cycle, whilst in a test mode, a much larger number of flip-

flops will change values, which results in excessive switching activity and current spikes [61].

Especially during self-test, power dissipation increases since random patterns desire as many nodes

switching as possible so as to test for many faults [62]. If the peak power during test is too large,

there will be a 𝑉𝑑𝑑 drop or ground bounce that can cause false-failures or device damage.

Some studies [61], [62] inserted TPs to reduce power consumption during test, but TP

placement was restricted to flip-flop outputs. Gerstendörfer et al. [62] used modified shift registers

that suppress activity at the output during shift operations: by adding NOR or NAND gates to the

outputs of latches controlled by a test enable pin, latch outputs were forced to known values and

16

thus did not cause circuit switching. Sankaralingam et al. [61] proposed inserting TPs into a

conventional full-scan circuit to keep peak power during scan below a given limit without

decreasing fault coverage (with TPs being inactive during the capture cycles): a subset of scannable

flip-flop outputs were forced to 0 and 1 during scan. First, cycle-by-cycle simulation identified

which scan cycle’s power consumption was greater than the specified limit. Second, an event-

driven, selective trace simulation procedure [63] estimated the power reduction for every latch

when its output was forced to 0 or 1, then latches were iteratively forced to reduce power

consumption.

 Timing Impacts of TPs

Timing is fundamental to modern digital electronics, as it provides synchronization that is

necessary for error-free data transfer. Data must be stable before and after the clock edge to be

reliably transferred. If not properly synchronized, there will be a host of design issues like,

including timing hazards, metastability, and race conditions.

Inserted TPs may cause circuit timing violations that break proper circuit operation [23],

and resolving these timing violations may require several tedious design iterations. Many attempts

have been proposed [43], [64]–[66] to insert TPs to increase fault coverage without creating new

timing violations. In Bist et al. [43] and Vranken et al. [66], timing analysis was performed before

TPI to identify paths with small timing slacks, then TPI was performed after removing candidate

TPs that reside on such paths. Tofte et al. [64] performed TPI without any constraints, then timing

analysis was performed to remove TPs which caused timing violations. Roy et al. [65] performed

TPI at the RTL-level (instead of the typical logical netlist level), which meant TPs were inserted

before logic synthesis, which avoided later design iterations.

17

Chapter 3

Introduction to ANNs

Inspired by biological neural networks, ANNs are computing systems consisting of an

extremely large number of simple processes (hardware processors, software functions, etc.) with

many interconnections. ANNs are one type of model for machine learning (ML) and attempt to

use the same principles of human thinking. Nodes in ANNs are artificial neurons that are

computational models inspired by natural neurons [67]. Since the great potential of ANNs is high-

speed processing provided in a massive parallel implementation, they are used in many fields [68].

ANNS are widely used in engineering: they are used as models of biological nervous system and

“intelligence”, as real-time adaptive signal processors, as controllers implemented in hardware in

robots, and as data analytic tools [69].

3.1 ANNs history

ANNs were a hot topic in artificial intelligence starting in the 1940s. Warren McCulloch

and Walter Pitts opened the subject by creating a computational model for neural networks in the

early 1940s [70]. Hebb was the first to define a learning rule to explain the behavior of networks

of neurons in 1949 [71]. In the late 1950s, Rosenblatt developed the first perceptron learning

algorithm [72]. In 1973, Dreyfus used backpropagation to adapt ANN parameters proportion to

error gradients [73]. In 1992, max-polling was introduced to help improve ANN quality [74].

3.2 ANNs structures

Many ANN structures exist in literature, and Figure 3.1 illustrates the prototypical ANN

structure. ANN architectures comprise an input layer, hidden layer(s), and an output layer. The

input layer receives the input values and the output layer stores output values. Layers between the

input and output layer are hidden layers, to which there can be a single or multiple layters. Each

18

layer can have one or more neurons. Connections between neurons have weights and biases.

Neurons have activation functions that determine a neuron’s input given its inputs. Many choices

exist for neuron activation functions and neuron arrangements (the number of levels, neurons per

level, etc.), and these hyperparameters are best optimized through trial-and-error.

Figure 3.1: An example of a) a single neuron, and b) the ANN prototypical structure

 Neurons

ANNs are composed of artificial neurons similar to biological neurons. The input neurons

collect feature values of the problem to solve, such as the pixels in images or letters in documents,

or their inputs can be from the outputs of other neurons. The outputs of the final neurons return an

answer to the problem, such as recognizing an object in an image.

 Connections

ANNs consist of connections, with each connection providing the output of one neuron as

an input to another neuron. Each connection has a weight (noted as 𝑤𝑖 in Figure 3.1) and bias

(noted as 𝑏𝑖 in Figure 3.1) assigned to it, and these weights represent its relative importance [75].

A given neuron can have multiple inputs and single output connection.

19

 Activation Functions

Activation functions are mathematical equations that determine the output of a neural

network. The function is attached to each neuron in the network and determines its output value.

Activation functions also normalize the output of each neuron to a range between 1 and 0 or

between -1 and 1. Activation functions can be divided into linear and nonlinear (e.g., Sigmoid,

Tanh, Rectified Linear Unit (ReLU), or Softmax) [76].

3.3 Training ANNs

Once a network has been structured for a particular application, that network is ready to be

trained. To start this process the initial weights are chosen randomly. Then, the training (or learning)

begins. There are two approaches to training – supervised and unsupervised. In supervised training,

training provides a set of both sample problem inputs and desired problem outputs. The network

then processes the inputs and compares its resulting outputs against the desired outputs. Errors are

then propagated back through the system, causing the system to adjust the weights that control the

network. In unsupervised training, the network is provided with inputs but not with desired outputs,

and the training algorithm attempts to find trends in the data to apply to future possible inputs.

3.4 ANN applications

ANNs have been widely applied to real-world problems in business, engineering, language,

and practical consumer products. In business, ANNs were used for credit scoring [77], financial

analysis [78], stock performance prediction [79], etc. In engineering, ANNs were implied in

aircraft component fault detectors [80], automotive guidance systems [81], robotics control system

[82], etc. ANNs were utilized in language, e.g., in email classification and categorization [83] ,

named entity recognition [84], machine translation [85], etc.

20

ANNs also have many applications in the electronics field, including chip failure analysis

[86], circuit chip layouts [87], prediction of electronic structure properties [88], etc. ANNs have

also been used in DFT testing problems, e.g., scan-chain diagnostic [11], fault classifiers [12], and

test pattern generation [89], [90].

21

Chapter 4

ANNs TPI Targeting Stuck-at Fault Coverage

This chapter introduces a method of applying ANNs to TPI for increasing SAF coverage

while drastically decrease CPU runtime. Increasing TPI quality is essential for the modern logic

circuit; the computational requirements of current TPI heuristics scale unfavorably against

increasing circuit complexity and it is time consuming process. ANNs were applied to several

EDA problems with noteworthy success [35], [11]. This gives the motivation to explore ANN to

increase TPI algorithm efficiency and overcome the drawbacks of TPI heuristics.

Much of this chapter has been published by the author in [91].

4.1 Introduction to the Stuck-at Fault Model

A SAF is a particular fault model used by fault simulators to mimic a manufacturing defect

within an integrated circuit. When a line is stuck it is called a fault: individual line is assumed to

be stuck at logical ‘1’ or ‘0’, called stuck-at-1 fault and stuck-at-0 fault, respectively. A single

stuck line is a fault model used in manufacturing testing; the model assumes that only one input or

output on one gate will be stuck at logic-1 or logic-0 at a time. SAF coverage represents the

percentage of all possible SAFs that a given test will detect. To test a SAF, a test vector applied to

the circuit’s inputs must have at least one output pin different from fault-free outputs [92].

4.2 Proposed Method

The proposed method created an ANN that evaluated TPs using circuit probability

information, i.e., COP controllability and observability values [40], which many other TPI

methods ([33], [21] and [35]) used. Evaluating a single TP did not require re-calculating COP

values: this was a noteworthy advantage of the ANN over TP-evaluating heuristics that required

re-calculating values when evaluating a TP: calculating COP values for a circuit with G gates

https://en.wikipedia.org/wiki/Fault_model
https://en.wikipedia.org/wiki/Integrated_circuit

22

requires 𝑂(𝐺) time. By performing COP once per TP insertion as opposed to once per TP

evaluation, this reduced TP evaluation time from 𝑂(𝐺) to 𝑂(1), which reduced the time to select

a single TP from 𝑂(𝑇′ ⋅ 𝐺) to 𝑂(𝑇′). However, for ANN TPI, long training time might negate this

benefit, thus the overall effect on TPI time (with and without training) was explored in Section

4.8.1.

The proposed ANN evaluated TPs and could be used in any iterative TPI algorithm [33],

[21] and [93]. Every iteration, the algorithm evaluated each individual TP to find the “best” TP

(i.e., the TP which increased SAF fault coverage the most), and the algorithm inserted this TP into

the circuit. This iterative selection and TP insertion continued until (1) the number of TPs inserted

reached a pre-designated limit (representing hardware overhead), (2) the predicted fault coverage

reached a pre-designated limit (i.e., no more TPs are necessary), (3) no TPs were predicted to

increase fault coverage, or 4) a CPU time limit was reached.

4.3 ANN Input

The input features to the ANN TPI were circuit 𝐶𝐶 and 𝐶𝑂 values. These were the same

values used by other conventional TPI algorithms [40], but the ANN used only pre-TP activation

values. Using these values in such a manner presented several potential benefits. First, using only

pre-TP activation values forgone the need to re-calculate 𝐶𝐶 and 𝐶𝑂 values for every TP and

decreased TP evaluating time. This benefit could also be interpreted as allowing for more (or

alternate) TPs to be inserted with identical computational effort, which in turn allowed for

increased TP selection quality. Second, an ANN could find relations between values during

training which heuristic algorithms may not take advantage of. For instance, the known issue of

𝐶𝐶 and 𝐶𝑂 values not considering fan-outs was ignored by many TPI algorithms, but a trained

ANN could find and acted on such nuances automatically.

23

In contrast to conventional TP-evaluating heuristics, the ANN performed its evaluation on

a transformed sub-circuit centered around a candidate TP location as opposed to estimating a TP’s

impact on the entire circuit. This was a consequence of using ANNs: the input size of an ANN

must be of a pre-determined size, whereas logic circuits could be of any size and topology. In

theory, the ANN could handle the largest possible circuit size or smaller by giving “unused” ANN

inputs “default” values, but this required an infeasibly large ANN that is impossible to train.

Instead, the ANN analyzed features around a TP’s location by analyzing a sub-circuit 𝐿 levels

forwards and backwards of the indicated location, as Figure 4.1 illustrates.

Figure 4.1: A sub-circuit size is represented by L levels. “X” marks the TP location.

The use of a sub-circuit presented a potential detriment of the ANN to explore: the ANN

used less information for its TP-evaluating calculations and may return less accurate qualifications.

The ANN would be as accurate as a heuristic or more using identical input features only if 𝐿 is

large enough to capture the entire circuit, but this created an infeasibly large ANN that was

impossible to train. Section 6.3.2 explores whether analyzing sub-circuits decreases the ANN’s

performance compared to conventional TPI.

A nuance of the sub-circuits was they must have a particular circuit configuration (hence

“transformed” in transformed sub-circuits): every gate must have at most two inputs and two fan-

outs. So circuits had to be converted into a consistent fan-in/out structure before the ANN was

used and trained. Any given circuit could be converted to this structure by replacing gates with

more than two inputs with functionally equivalent copies and by adding buffers to fan-outs, as is

CUT
X

Sub-circuit

0
1

2 N+2

N+1
X

L levels L levelsX

N

...
...

...

M+N
...

24

illustrated in Figure 4.2. After conversion, the circuit’s logic function was not changed, and 𝐶𝐶

and 𝐶𝑂 values for lines and gates in the original circuit were same.

Figure 4.2: A conversion of a sub-circuit to the format of no more than two fan-in/fan-out per

gate.

The input vector to the ANN was 𝐶𝐶 and 𝐶𝑂 values around a candidate TP location in a

vectorized format, as is illustrated in Figure 4.3. The first value was the 𝐶𝐶 value of the candidate

TP location. This was followed by the 𝐶𝐶 value of gate inputs (and fan-outs) feeding the TP

location, then the 𝐶𝐶 value of gate inputs (and fan-outs) feeding these gates, etc., in a breadth-first

order. This was repeated until 𝐿 levels values were collected. This process was repeated starting

at the candidate TP location moving forward in the circuit until 𝐿 levels values were collected.

When moving forward, the values of fan-ins to gates were also captured. 𝐶𝐶 values were followed

with 𝐶𝑂 values in the same order. For gates with one input or one fan-out, “default values”

replaced the values in the feature string: non-existent lines had 50% controllability and 0%

observability, and non-existent gates, which were normally represented using a one-hot encoding

(e.g., 0001 = AND, 0010 = OR, etc.), were replaced with a no-hot encoding (e.g., 0000).

25

0

1

2

0a

0b

1fo

2fo

N+1

N+2

N+1b

N+2a

N+1a

N+2b

N N+N

NN Input Vector

CC0,CC1fo,CC0a,CC0b,CC2fo,CC1,CC2, CCNb,CCN+1a,CCN+1b, CCN+N-1,CCN+N,

CO0,CO1fo,CO0a,CO0b,CO2fo,CO1,CO2, CONb,CON+1a,CON+1b, CON+N-1,CON+N,

Gate_0,Gate_1,Gate_2, Gate_N,Gate_N+1,Gate_N+2, Gate_N+N

L levels L levelsX

X

Figure 4.3: The ANN input features are CC, CO, Gate type.

4.4 Output Label

The output of the ANN was the impact on SAF coverage, a TP had on a circuit when it was

inserted and activated: Δ𝐹𝐶𝑡 = 𝐹𝐶 − 𝐹𝐶𝑡 . In this formula, 𝐹𝐶 was fault coverage of sub-circuit

with no TPs, and 𝐹𝐶𝑡 was fault coverage of sub-circuit with TP 𝑡 active. Training values were

found through fault simulation of a circuit before and after a TP had been inserted. This was a

relatively computationally intensive process to perform, but every time it was performed more

training data would be generated and the accuracy of the ANN would increase. To avoid the ANN

being too specialized to one type of circuit, fault-simulated TP impacts were calculated for a

diverse set of circuits.

4.5 Training Data Generation

The data generation process included generating input features and corresponding labels

required to train the ANN. First, arbitrary locations were chosen in training circuits and sub-

circuits were extracted from these locations. Second, 𝐶𝐶 and 𝐶𝑂 values (which require a single-

pass calculation per training circuit to generate) and gate types (AND, NOR, etc.) in the sub-circuit

were recorded.

26

The output label was generated by fault simulation, which was computationally demanding:

fault simulating 𝑉 vectors in a circuit with 𝐺 gates and 𝐹 faults requires 𝑂(𝑉 ⋅ 𝐺 ⋅ 𝐹) time,

therefore collecting 𝑆 training samples required 𝑂(𝑆 ⋅ 𝑉 ⋅ 𝐺 ⋅ 𝐹) time. Reducing 𝑉 to a small

number of vectors was not an option, since an LBIST test typically applied many vectors. To

generate training output faster, two speed up techniques were used to reduce time.

The first training speedup technique was to apply fault simulation to sub-circuits in lieu of

larger circuits with assistance from circuit probability information. Performing fault simulation on

sub-circuits significantly reduced 𝐺 and 𝐹 (since the number of faults in a sub-circuit was

proportional to the number of gates), which in turn reduced fault simulation time. However, truly

random stimulus of sub-circuit inputs and direct observation of sub-circuit outputs was not realistic:

under random circuit stimulus, sub-circuit inputs were not truly random, nor are sub-circuit outputs

always observed. To account for this, the training data generation program calculated COP

controllability and observability values once per training circuit. This additional 𝑂(𝐶) calculation

time was negligible when taking a significant number of sub-circuit samples from a given circuit.

Fault simulation weighted each sub-circuit input vector using these COP controllability values.

Additionally, if a fault’s effect reached a sub-circuit output, fault simulation probabilistically

detected it using the COP observability values of sub-circuit outputs.

A second technique reduced training data generation time by eliminating redundant vectors.

Simulating all 2|𝐼𝑆| input patterns (where |𝐼𝑆| was the number of inputs of the sub-circuit) for a

sub-circuit took significantly less time compared to simulating 10K (or other common pseudo-

random test lengths) random patterns for fault simulation for practical values of |𝐼𝑆|, but even

under many random vectors, all 2|𝐼𝑆| input patterns may not be applied. This was because the

𝐶𝐶, 𝐶𝑂 values of inputs can prevent all patterns being applied, even when the number of patterns

27

applied was significantly greater than 2|𝐼𝑆|. The probability of generating an input pattern based

on 𝐶𝐶 and 𝐶𝑂 could be calculated as 𝑝 = ∏ 𝐶𝐶𝑖
′

∀𝑖∈𝐼 , where 𝐶𝐶𝑖
′ is 1 − 𝐶𝐶𝑖 if a 0-value was

needed or 𝐶𝐶𝑖 was a 1-value is needed. The probability of generating a pattern in 𝑉 vectors was

𝑃𝑖 = 1 − (1 − 𝑝)𝑉. Likewise, if a fault was observed on an output “𝑜”, the probability of the fault

being observed on the pin in 𝑉 vectors was 𝑃𝑜 = 1 − (1 − 𝐶𝑂𝑜)𝑉 . By calculating these

probabilities, every 2|𝐼𝑆| input vector was simulated at most once with probability 𝑃𝑖, and if the

vector was applied, simulated faults would be considered detected with probability 𝑃𝑜.

4.6 Training

To make the ANN training process simpler, three separate, smaller ANNs were trained

representing the three TP types: control-0, control-1, and observe TPs. The alternative to this was

to have a single ANN with an extra “TP type” input, but this made the complexity of the ANN

unnecessarily large. When evaluating a TP’s quality, the appropriate trained ANN was used.

After training data was created, ANN training was performed under various ANN

hyperparameters to minimize ANN error (in this study, mean squared error). Finding a truly

optimal ANN for a given training data set is an NP-hard problem [94], and small changes in initial

training conditions and ANN parameters can have significant impacts on the resulting ANN quality,

thus a trial-and-error process was used to minimize this ANN error.

4.7 ANN TPI Flow

The use of a trained ANN in a TPI algorithm is analogous to the use of a TP-evaluating

heuristic in an iterative TPI algorithm [33]. A trained ANN calculates a candidate TP’s quality,

and after doing so for every candidate TP, the highest quality TP is inserted. The entire TPI flow

is shown in Figure 4.4.

28

Figure 4.4: ANN TPI Flow.

4.8 Experiment Results

 Experiment Setup

Industry-representative workstations performed fault simulation and TPI using original

software. These workstations used Intel i7-8700 processors and possess 8 GBs of RAM, and all

software was written in C++ and compiled using the MSVC++14.15 compiler with maximum

optimization parameters. Original software was used in lieu of industry tools to obtain a fair

comparison of the proposed ANNs against methods from literature: only code which analyzed the

“quality” of a TP was changed between the methods thereby minimizing other sources of CPU

time differences.

The ANN was trained by Python and TensorFlow. TensorFlow is an open-source symbolic

math library developed by Google Brain [95], and it can be used across a range of tasks but has a

29

particular focus on training and evaluation deep neural networks. TensorFlow provides the

TensorBoard function that stores statistical data and plots scalar figures for the training process.

The conventional TPI method used for comparison was from [33]. It [33] is an iterative

TPI method that is representative of TPI implemented in industry, although industrial tools have

many additional computation-time optimizations. Conveniently, the studied ANNs can directly

replace the “quality” measuring subroutine in [33], which eliminated other sources of fault

coverage and CPU time differences.

The benchmarks used in this study, both for ANN training and TPI evaluating, are given

in Table 4.1, which were from the ISCAS’85 [96] and ITC’99 [97] benchmarks, which represent

a wide range of industry-representative circuits. Table 4.1 provides the number of nets in each

benchmark (“Num. nets”) and the number of nets in the circuit after it was expanded (“Num. exp.

nets”) using the method resented in Section 4.3. If the benchmark was used for ANN training, the

number of training TPs and sub-circuits extracted is given. From each sample/sub-circuit, the

impact of a control-0, control-1, and observe TP was fault simulated using the method presented

in Section 4.4. The total number of training samples/sub-circuits collected was 11,561.

30

Table 4.1: Training and Evaluation Benchmarks for TPI

 Benchmarks Num. nets Number. Exp. nets Num. Samples

T
ra

in
in

g

c17 11 11 2

c499 243 425 6

c1355 587 881 13

c1238 543 1016 14

c2670 1426 1969 25

c6288 2448 3376 52

c7552 3719 5482 72

b02 27 46 2

b04 729 1221 16

b06 50 93 2

b08 179 304 4

b10 200 342 5

b12 1070 1900 26

b14 10044 17719 242

b15 8852 16920 232

b17 32229 59818 817

b18 114598 201844 2758

b19 231290 405924 5549

b20 20204 35993 491

b21 20549 36916 503

b22 29929 53564 730

E
v
al

u
at

io
n

c432 196 310

c880 443 682

c1196 561 978

c1908 913 1315

c3540 1719 2693

c5315 2485 4396

b01 47 80

b03 156 268

b05 962 1783

b07 433 706

b09 169 280

b11 764 1271

b13 352 543

 ANN Training Experiments

The first issue explored through ANN training was the impact of different ANN structures.

As discussed in Section 3.2, many different parameters influence the quality of an ANN, including

31

ANN size (the number of neurons and the number of layers), ANN connectivity, training time, and

neuron activation functions. These parameters were thoroughly explored through several

parameter sweeps to find the configuration which minimizes the average error of the ANN. Figure

4.5 shows three trends of the control-1 TP, control-0 TP, and observe TP evaluation ANN. The

figure shows the ANN accuracy as more training time was allocated, which shows that training

effort was “saturated” after some point. All ANNs in this study were trained beyond this saturation

point.

The second issue explored was the neuron’s number impact on ANN accuracy. Figure 4.6

shows the accuracy of different ANNs for varying numbers of neurons, which shows more neurons

may not produce a higher quality ANN. ANNs with different numbers of neurons (8,16,32,64,128)

were used to train control-1 TP, control-0 TP and observe TP in the same literation, and the training

error showed the ANN accuracy. The final parameters chosen were two hidden layers with 128

neurons in the first layer and a single neuron in the second layer. A ReLU activation function and

the Adam Optimization method [98] were used for training the ANN.

Figure 4.5: A plot of training time’s impact on ANN accuracy.

3.77

5.18

2.23

0

10

20

0 400 800 1200

T
es

t
E

rr
o
r

(%
)

Time (sec.)

Control-1 TP

Control-0 TP

Observe TP

32

The third issue explored was how the size of training data influences the quality of the

ANN. Figure 4.7, which plots the control-1 TP ANN error with respect to training data size, shows

that small training data size created an inferior ANN, but large data sizes increased ANN training

time with minimal returns on ANN quality. Different sizes of training data were collected and used

to train the ANNs: 0.1%, 0.5%, 0.9%, and 1.5% of all TP locations in all training circuits. From

this, the ANN with the lowest error was chosen: the total training samples/sub-circuits was 11,561,

the data collecting time was 33.6 minutes, and the ANN training time was 16.3 minutes. This 50-

minute overhead was considered with evaluating the computational efficiency of ANN TPI.

Figure 4.6: A plot on the number of neuron’s on ANN accuracy.

3.63
3.39 3.69

2.8 2.89

5.59

4.9
4.45 4.4 4.56

2.55
2.24

2.61

2.22

2.01

0

1

2

3

4

5

6

8 16 32 64 128

T
ra

in
 E

rr
o
r

(%
)

Num. Neurons

Control-1 TP Control-0 TP Observe TP

33

Figure 4.7: A plot of training data size on ANN accuracy.

 TPI Experiment Results

The results of fault simulation on benchmark circuits are shown in Table 4.2. First, this

table shows the final fault coverage for three variations of benchmark circuits: with no TPs, after

ANN TPI was performed, and after conventional TPI [33] was performed, with the conventional

TPI using the same information used for ANN training (i.e., neither the ANN nor conventional

TPI have an information advantage). These three circuit variations were fault simulated with 100,

1,000, and 10,000 vectors to confirm the effect of TPs was consistent under different stimulus

conditions. For both TPI methods, the number of TPs inserted is listed under “num. TPs”, which

was limited to 1% of the total number of nets or predicted fault coverage limits or negative TP

impact limits were never reached for any benchmark. Second, the table lists the time required to

perform TPI for both ANN TPI and conventional TPI [33]. To account for random stimulus

variation, the average fault coverage was recorded amongst multiple trials: 100 trials for 100

vectors, 50 trials for 1,000 vectors, and 10 trials for 10,000 vectors.

5.84

4 3.77
3.28

7.4

5.16 5.19

4.33

3.04

3.4 2.23 2.01

0

1

2

3

4

5

6

7

8

T
es

t
E

rr
o
r

(%
)

Training Data Size

Control-1 TP

Control-0 TP

Observe TP

1297 6426 11561 19260

34

Table 4.2 shows the fault coverage created from TPs inserted by the ANN TPI algorithm

was decisively superior compared to conventional TPI. This is better illustrated in Figure 4.8,

which gives the relative fault coverage obtained by the ANN TPI compared to conventional TPI.

These results revealed several findings. First, the fault coverage of ANN TPI was frequently higher,

with the only benchmark providing lower fault coverage being b13. Second, it was noteworthy

that extreme differences in fault coverage favor ANN TPI, as is demonstrated by the benchmark

b05.

35

Table 4.2: ANN TPI and Conventional TPI Targeting SAF Experimental Results

Benchmarks c432 c880 c1196 c1908 c3540 c5315 b01 b03 b05 b07 b09 b11 b13

Num. TPs 1 3 5 8 16 23 0 1 9 3 1 7 2

Num. nets 196 443 561 913 1719 2485 47 156 962 433 169 764 352

Num. exp. nets 310 682 978 1315 2693 4396 80 268 1783 706 280 1271 543

Processor memory (MB) 4 11 21.7 154.5 170 227.1 3.6 42.6 9.2 9.9 32.5 5.9

 Num. Vectors

S
A

F
 c

o
v

er
ag

e
(%

)

No TPs

100
92.3

7
90.31 66.99 75.86 80.50 94.30 100

98.

12
66.63

88.

71

79.

86

80.2

4

89.

94

1K
98.5

8
97.26 87.14 94.60 94.47 99.18 100

99.

98
75.50

92.

76

84.

60

92.0

6

94.

52

10K
98.8

4
99.71 92.97 99.73 96.38 99.41 100 100 80.04

97.

55

98.

56

95.3

8

95.

78

ANN TPI

100
98.8

2
99.86 94.23 99.69 96.40 99.44 99.

99
83.00

97.

52

99.

57

95.9

1

95.

75

1K
98.8

3
99.84 94.65 99.83 96.38 99.44 100 82.95

97.

68

99.

02

95.6

6

95.

75

10K
98.8

4
100 94.35 99.91 96.47 99.44 100 83.03

97.

75

99.

91

96.0

7

95.

79

Conventiona

l TPI

100
98.8

2
99.85 92.00 99.19 96.45 99.06 99.

99
63.62

93.

28

99.

53

94.2

0

98.

48

1K
98.8

3
99.82 91.92 99.32 96.43 99.06 100 63.50

93.

30

98.

96

94.1

8

98.

47

10K
98.8

4
100 92.06 99.41 96.47 99.06 100 63.66

93.

32

99.

85

94.2

1

98.

52

E
x
ec

u
ti

o
n

 t
im

e
(m

in
.)

ANN TPI

100 1.14 7.32 30.94 128.72
967.5

1

1568.

82
 0.3

8

131.6

2

10.

79

0.5

8

72.9

0

2.0

0

1K 1.09 7.17 30.43 124.62
894.4

3

1488.

73
 0.1

1

122.5

1

9.9

7

0.5

5

68.5

9

1.8

0

10K 1.06 8.31 31.65 123.63
930.0

1

1508.

25
 0.3

1

122.1

9

10.

08

0.5

8

69.6

7

1.8

0

ANN TPI

including

training time

100 2.08 9.46 34.19 133.12
976.5

9

1583.

21
 1.1

8

137.6

2

13.

04

1.4

4

77.1

3

3.6

5

1K 2.03 9.31 33.68 129.02
903.5

1

1503.

12
 0.9

1

128.5

1

12.

22

1.4

1

72.8

2

3.4

5

10K 2.00 10.45 34.90 128.03
939.0

9

1522.

64
 1.1

1

128.1

9

12.

33

1.4

4

73.9

0

3.4

5

Conventiona

l TPI

100 2.27 23.14 75.50 323.87
7321.

71

7199.

80
 1.2

5

4004.

53

27.

12

1.6

2

204.

02

10.

06

1K 2.36 23.31 78.39 323.37
5302.

20

7015.

34
 1.3

1

482.7

2

25.

90

1.5

6

195.

05

10.

02

10K 2.17 23.77 76.44 329.86
7314.

74

7003.

95
 1.2

0

3578.

09

26.

53

1.5

6

195.

57

9.8

0

36

Figure 4.8: ANN and conventional TPI targeting SAF in SAF coverage comparison.

The second observation from Table 4.2 is the time to perform TPI was significantly less

for ANN TPI compared to conventional TPI, including when ANN training and data collecting

time was proportionally distributed amongst circuits according to circuit size. This is better

illustrated in Figure 4.9, which gives the execution time of ANN TPI compared to conventional

TPI. This figure clearly shows the ANN TPI performed faster than conventional TPI across all

benchmark circuits, with on average ANN TPI being done in one-sixth of the time. This result was

understandable given the ANN TPI did not need to re-calculate CC and CO values for every

candidate TP, and instead it evaluated the ANN for its input vector, which was a relatively fast

process for a small sub-circuit. When training time (approximately 50 minutes) was distributed

proportionally amongst all benchmarks according to size (e.g., smaller circuits add a smaller

fraction of the 50 minutes and vice versa), the impact on TPI time became negligible for larger

circuits and the total TPI time was still decreased across all benchmarks.

-5

0

5

10

15

20

25

c4
3
2

c8
8
0

c1
1
9
6

c1
9
0
8

c3
5
4
0

c5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

∆
S

A
F

 C
o
v
er

ag
e

(%
)

Benchmarks

100 Vectors

1K Vectors

10K Vectors

37

Figure 4.9: ANN and conventional TPI targeting SAF in time comparison.

4.9 Conclusion

This chapter has demonstrated the effectiveness of applying ANNs to TPI for increasing

SAF coverage. This chapter has shown that ANNs can effectively predict the impact TPs will have

on the SAF coverage for pseudo-random stimulus compared to conventional TPI methods. It has

also been demonstrated that TPI algorithms can use ANNs to insert TPs into a circuit at

significantly increased speeds, thereby allowing design efforts to be focused elsewhere or allowing

additional effort to be spent on increasing TP quality.

b03

b09

c432

b13

c880
b07

c1196

b11
c1908

b05

c3540 c5315

0.1

1

10

100

1000

10000

0 1000 2000 3000 4000 5000

E
x
ec

u
ti

o
n
 T

im
e

(m
in

.)

Num.Nodes

ANN TP without training time

ANN TPI with training time

Conventional TPI

38

Chapter 5

ANNs TPI Targeting Transition Delay Fault Coverage

Delay-causing defects become more common as semiconductor sizes scale [34], and the

SAF model can no longer be the sole fault model for evaluating LBIST quality. Usually, control

TPs are used for increasing SAF coverage, but they are known to block other faults found in

modern technologies [21]. Roy et al. [21] found typically-implemented control TPs (i.e., control-

0 test points using AND gates and control-1 test points using OR gates [10]) masked the

propagation and excitation of delay faults when active. Two alternatives can mitigate delay

masking detriments, but both have drawbacks. First, observe test points can be used exclusively,

but exciting RPR faults may require forcing values in circuits and implementing observe test points

require expensive latches or output pins. Second, circuits can be tested with TPs both on and off.

This is normal industry practice, but disabling TPs mitigates their purpose: ideally, active TPs can

test RPR and delay faults simultaneously. Therefore, this study’s ANN has the following goal:

insert TPs, both control and observe test points, to detect RPR faults without masking delay faults.

This chapter aims to address this by comparing ANN TPI targeting TDF against comparable

conventional TPI [33] in SAT fault, TDF and execution time.

Much of the content of this chapter appears in work previously published by the author

[99].

5.1 Introduction to the Transition Delay Fault Model

With the current generation microprocessors becoming faster and more complex, new

challenges are faced in their testing. Research and experiments [100], [101] have shown that for

high design quality requirements it is not sufficient to test a design only for SAFs. Hence functional

at-speed tests are sometimes used in addition to the conventional scan tests.

39

The TDF model assumes that delay faults affect only one gate in the circuit. There are two

transition faults associated with each gate: a slow-to-rise fault and a slow-to-fall fault. It is assumed

that in the fault-free circuit each gate has some nominal delay. Under TDF model, the extra delay

caused by a fault is assumed to be large enough to prevent a transition from reaching any primary

output at the time of observation.

To detect a transition fault in a combinational circuit, it is necessary to apply two input

vectors, 𝑉 =< 𝒗𝟏, 𝒗𝟐 >. The first vector, 𝒗𝟏, initializes the circuit, while the second vector, 𝒗𝟐,

activates the fault and propagates its effect to some primary output. During the application of the

second vector, the fault behaves as a SAF and vector 𝒗𝟐 can be found using SAF test generation

tools. For example, for testing a slow-to-rise transition, the first pattern initializes the fault site to

0, and the second pattern is a test for stuck-at-0 at the fault site. A transition fault is considered

detected if a transition occurs at the fault site and a sensitized path extends from the fault site to a

circuit primary output [102].

 The main advantage of the TDF compared to the PDF model is that the number of faults

in the circuit is linear in terms of the number of gates. Also, SAF test generation and fault

simulation tools can be easily modified for handling transition faults [102].

5.2 Proposed Method

This proposed method used a trained ANN to find a TP’s impact on delay fault coverage,

and the process was similar to Chapter 4. The label was found through training changes to detected

TDF coverage (instead of SAF coverage). This change was a two-step process. First, the training

data collection program used the TDF model in lieu of the SAF model. Alternative delay fault

models exist, but studies show the TDF model sufficiently represents industrial faults, and

implementing the TDF model requires minimal changes to SAF simulators [93]. Second, instead

40

of probabilistically simulating 2𝐼′
 vectors for each sub-circuit, the training data generation

program probabilistically simulated 22⋅𝐼′
 vector pairs because TDFs require two vectors to detect:

one to set the initial state and another to launch the circuit transition. In this study, 𝑉 ≫ 22⋅𝐼′
.

5.3 Input Features

Many input features and feature extraction methods of ANN were similar to Chapter 4 and

are briefly redescribed here. First, since ANNs had pre-defined sizes and large ANNs required

more training time and data to be useful, the ANN evaluated a TP’s quality using a sub-circuit

centered around a TP’s location. Second, the ANN’s input features were the probabilistic

calculations of the lines in this sub-circuit. These calculations were COP controllability and

observability values [40], which were widely used in many TPI algorithms [33], [93]: these values

estimated the probability that a circuit line was logic-1 (and inversely, logic-0) and the probability

that a fault on a circuit line was observed, respectively. Third, the gate types in the extracted sub-

circuit were represented as one-hot binary strings. During TPI and training data generation, these

features were calculated and passed to the ANN in a set order: first controllability values, then

observability values, then gate types, all of which were given in a breadth-first order [91].

5.4 Output Label

The output label of the ANN was the change in TDF coverage on a sub-circuit centered

around the TP location when the TP was active. Many delay fault models attempted to accurately

model delay-causing defects [103], and the TDF model is known to model realistic defects. The

use of a sub-circuit allowed training data to be efficiently collected , but this created a potential

detriment: other TP quality-calculating heuristics could calculate the effect a TP had on an entire

circuit (as was the case of this study’s comparison, [93]), and therefore may return more accurate

results.

41

5.5 Training Data Generation

Training an ANN required a set of features attached to known solution labels, or “training

data”. This training data came from problems that were solved by other means, i.e., problems that

were solved by hand or a best-solution that was solved through exhaustive exploration.

 The ANN’s output label was the “true” TDF coverage on a sub-circuit when inserting a

TP: this was obtained through fault simulation. Fault simulation is a CPU-intensive process, which

is why most conventional TPI methods use fault coverage estimation techniques [33], [93]. Such

estimations can give inaccurate fault coverage results [40], and thus less effective TPs may be

chosen for insertion. The ANN attempted to more accurately predict the TDF coverage impact of

a TP without performing fault simulation during TPI. Instead, fault simulation was performed

during training: the impact of training CPU time was distributed across all uses of the ANN TPI,

thus if the ANN was re-used enough times, the impact of training time became negligible.

To obtain the training label (TDF coverage) from a sub-circuit, techniques were needed to

reduce training data generation time. Presuming 𝑉 pseudo-random vector pairs (pairs are required

for delay fault simulation) were applied to a sub-circuit with 𝐼 inputs, a vector pair would be

applied more than once, which was likely for significant values of 𝑉 for smaller sub-circuit sizes

(which for this study, 𝐼 ≤ 6), and fault simulating a vector pair more than once wasted simulation

time. This was exacerbated when sub-circuits were extracted from a circuit, since input vectors to

the sub-circuit are not random: paths from circuit inputs to sub-circuit inputs weighed circuit value

probabilities and made some vectors more likely to occur than others.

To prevent training vector pairs being applied more than once, the following technique

used heuristically-calculated circuit controllability calculations to conditionally simulate all vector

pairs. First, for each vector 𝑣 among the 2𝐼 sub-circuit input vectors, the probability of applying

42

the vector was calculated using COP circuit controllability information. The probability of the

required logic-0 and logic-1 values occurring (“𝐶𝑖
′") was used to calculate this probability:

𝑝(𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) = 𝑝𝑣 = ∏ (1 − (1 − 𝐶𝑖
′)𝑁)∀𝑖∈𝐼 5.1

Second, a sub-set of all the 22𝐼 sub-circuit vector pairs was chosen to be simulated using

the previously calculated probabilities, i.e., a vector pair was simulated with probability 𝑝𝑣1
⋅ 𝑝𝑣2

.

This simulation of vector pairs was the most significant improvement in this ANN compared to

that presented in Chapter 4. Third, each of the sub-circuit vector pairs was fault simulated 𝑇 + 1

times: once without any TPs and once for each of the 𝑇 TPs (in this study, 𝑇 = 3 , which

represented control-0, control-1, and observe points). Fault effected on output pins were

probabilistically observed using “observability” calculations from COP [40]. Lastly, the

controllability, observability, and gate types of the sub-circuit were used for training features and

the change in fault coverage created by the 𝑇 TPs were used as training labels for 𝑇 separate ANNs.

5.6 Training

The training process was the same as Section 4.6. Three separate, smaller ANNs were

trained representing the three TP types: control-0, control-1, and observe TPs. ANN training was

performed under various hyperparameters to minimize ANN error (in this study, mean squared

error).

5.7 Experiment Results

 Experiment Setup

The experiment workstation and software were the same as Section 4.8.1.

The conventional TPI method used for comparison was a modified version of [33]. It was

an iterative TPI method representative of TPI implemented in industry, although industrial tools

will have many additional computation-time optimizations. Conveniently, ANN directly replaced

43

the “quality” measuring method in [33], which eliminated other sources of fault coverage and CPU

time differences. However, the method in [33] did not attempt to insert TPs to increase delay fault

coverage. To correct this, the “quality” calculation to judge the detection probability of a stuck-at

fault (the controllability of a line, multiplied by the observability of the line) was directly replaced

by the calculation proposed in [93], which attempted to model the probability a transition would

occur on a line and be observed at a circuit output (the controllability of a line, multiplied by the

inverse of this controllability, multiplied by the observability of the line). This created a TPI

method which attempted to increase delay fault coverage that used the same information as the

proposed ANN. Therefore, the only difference in run-time and fault coverage quality was in

judging the “quality” of a given TP.

This study used post-synthesis logic netlists of the ISCAS’85 [96] and ITC’99 [97]

benchmarks. A randomly selected subset, given in Table 5.1, was used solely for training, and the

table provides the number of sub-circuits (i.e., TP locations) extracted for training -the number of

extracted sub-circuits is proportional to the circuit size. It was presumed that circuits were tested

in a full-scan environment with scan chains loaded from a 31-bit long PRPG and delay tests were

performed using “launch-off-shift”, hence the “inputs” and “outputs” in Table 5.1 and Table 5.2

include flip-flops outputs and inputs, respectively. When TPs were present, control points were

enabled by a common “TP enable” pin which was active for half of all vectors applied. Although

other methods to selectively enable sub-sets of TPs existed in literature [30], such architectures

were not the scope of this study.

44

Table 5.1: Train Benchmarks for ANN TPI Targeting TDF

Benchmarks Training Samples Inputs Outputs Gates

c17 2 5 2 13

b02 2 5 5 32

b06 2 11 15 65

b08 8 30 25 204

b10 9 28 23 223

c499 12 41 32 275

c1355 24 41 32 619

b04 32 77 74 803

b12 51 126 127 1197

c2670 49 233 140 1566

c6288 100 32 32 2480

c7552 143 207 108 3827

b15 445 485 519 9371

b14 471 277 299 10343

b20 950 522 512 20716

b21 980 522 512 21061

b22 1443 767 757 30686

b17 1562 1452 1512 33741

b18 5276 3357 3343 117941

Table 5.2: ANN TPI and Conventional TPI Targeting TDF Experimental Results

 Fault Coverage, TDF (%) Fault Coverage, SAF (%) TPI Time (s)

Benc

hmar

ks

In. Out. Gates Vec. TPs No TPs
Conventi

onal TPI

ANN

TPI

No

TPs

Conventi

onal TPI

ANN

TPI

Conventio

nal TPI
ANN

ANN

(inc.

training

)

b03 34 34 190 216 1 78.31 78.76 78.91 92.14 92.38 92.86 1.00 0.01 0.54

b09 29 29 198 216 1 66.00 67.70 74.31 86.85 89.20 88.56 1.00 0.08 6.08

c432 36 7 203 5832 2 95.49 95.49 95.83 98.71 98.71 99.08 12.00 0.12 9.01

b13 63 63 415 512 6 81.19 81.80 83.24 94.11 94.34 95.93 10.00 0.60 45.07

c880 60 26 469 1331 4 93.35 92.32 93.58 98.29 97.08 98.39 44.00 0.66 49.57

b07 50 57 490 512 4 77.10 77.94 78.42 85.89 87.83 87.68 56.00 0.80 59.94

b11 38 37 801 10000 8 86.52 92.10 87.60 94.15 96.58 95.93 283.00 2.80 210.01

c1908 33 25 938 10000 9 98.85 98.56 98.85 99.66 99.66 99.66 794.00 3.36 252.38

b05 35 70 1032 10000 10 70.08 75.86 71.82 76.23 79.98 78.21 649.00 4.80 360.54

c3540 50 22 1741 10000 12 89.77 92.06 89.85 95.39 95.61 95.61 3746.00 8.00 600.90

c5315 178 123 2608 6859 13 97.50 97.52 97.54 98.97 98.95 99.00 3746.00 13.00 976.46

After many trials of ANN training, the final ANN configuration chosen was 1 hidden

neuron layer of 128 neurons, with each hidden neuron using a sigmoid [104] activation function.

When performing TPI and fault simulation, the number of vectors applied (and used for

TPI calculation) was individualized for each benchmark and was given in the column labeled “Vec.”

45

This value was calculated based on projections given in [105]: fault simulation with random

vectors was performed on TP-free circuits until 63.2% stuck-at fault coverage was obtained, and

this number of random vectors was then used to project the number of random vectors needed to

obtain 95% stuck-at fault coverage, and this number or ten thousand was used, whichever was

lesser. This represented an industrial environment where either (1) TPs were intended to increase

stuck-at fault coverage as much as possible after 95% stuck-at fault coverage was achieved, or (2)

95% stuck-at fault coverage was not obtainable in ten thousand vectors and TPs were inserted to

assist in obtaining 95% stuck-at fault coverage.

 TPI Experiment Results

This experiment examined the delay fault coverage obtained when TPs were inserted using

a conventional TPI method compared to using ANN, and the results of this experiment are given

in Table 5.2. These benchmarks were not used for ANN training to prevent an advantage to the

ANN. TPs were inserted until either (1) no TP was calculated to increase fault coverage, (2) 99%

fault coverage was predicted to be obtained, or (3) the number of inserted TPs was greater than 1%

of all nodes. Afterwards, traditional TPI was performed until the same number of TPs was inserted,

with the number TPs given under the heading “TPs” in Table 5.2.

Fault coverages are given in Table 5.2, and changes in fault coverage are plotted in Figure

5.1 and Figure 5.2, which shows notable trends. First, inserting TPs using the proposed method

never decreased TDF or SAF coverage, while the conventional method decreased (see c880 and

c1908). Additionally, the ANN TPI method achieved comparable TDF and SAF coverage

compared to the conventional TPI method.

46

Figure 5.1: ANN and conventional TPI targeting TDF in TDF coverage comparison.

Figure 5.2: ANN and conventional TPI targeting TDF in SAF coverage comparison.

An additional result extracted from the previous experiment was the time required to

perform TPI. This is given in Table 5.2 under the heading “TPI Time (s)” for the two TPI methods,

which the ANN substantially decreased TPI time, and this remained true when training data

generation and ANN training was considered. These results are transposed to Figure 5.3, which

plots TPI CPU time relative to the number of logic gates in each circuit. When the training data

-1

3

7

11

b
0
3

b
0
9

c4
3
2

b
1
3

c8
8
0

b
0
7

b
1
1

c1
9
0
8

b
0
5

c3
5
4
0

c5
3
1
5

Δ
T

D
F

 C
o
v
er

ag
e

(%
)

Benchmarks

Conventional TPI ANN TPI

-2

0

2

4

b03 b09 c432 b13 c880 b07 b11 c1908 b05 c3540c5315

Δ
S

A
F

 C
o
v
er

ag
e

(%
)

Benchmarks

Conventional TPI ANN TPI

47

generation time (3,544 seconds) and ANN training time (864 seconds, which included exploring

multiple ANN configurations) was distributed among benchmarks by circuit size (i.e., more time

was added to circuits with more logic gates), the ANN TPI time was still significantly lower for

all benchmarks.

Figure 5.3: ANN and Conventional TPI targeting TDF in time comparison.

5.8 Conclusion

This chapter has demonstrated the effectiveness of applying ANNs to TPI for increasing

TDF coverage. This chapter has shown that the ANN TPI obtains comparable TDF coverage and

SAF coverage results compared to conventional TPI, and it also obtains results in significantly less

time. Given a challenge of TPI (and other EDA problems) is managing and sharing computational

resources, reducing TPI time without reducing TP quality is beneficial to circuit designers.

b03

b09 c432

b13 c880

b07

b11

c1908

b05
c3540

c5315

0.001

0.1

10

1000

100 1000 10000

T
P

I
T

im
e

(s
)

Num. Nodes
Conventional TPI ANN TPI ANN TPI (inc.training)

48

Chapter 6

Developments in ANN TPI

Although the previous Chapters’ ANNs were effective in providing better TPs for detecting

SAFs and TDFs under pseudo-random stimulus, room for improvement remains. The previous

ANNs were trained in a way that may not accurately reflect the nature of the pseudo-random

stimulus, thus nuanced changes to the ANN training process and the ANN’s use may further

increase its utility.

As of this writing, the content of this chapter is currently awaiting publication.

6.1 ANN Input Feature Development

Compared to previous ANN input features, this section adds the number of applied pseudo-

random vectors 𝑉 to the end of the ANN feature string. Depending on the number of vectors to

apply, the optimal location of TPs can change. To account for this, this study appends the number

of vectors to apply, 𝑉, to the ANN feature string.

6.2 ANN Output Label Development

The ANN’s output label is the number of additional (or possibly fewer) faults detected in

the sub-circuit when inserting a TP into its center. This label contrasts with the label in Section 4.4

and Section 5.4, which was the change in fault coverage in the sub-circuit. This new label more

accurately models the impact of “partial” sub-circuits: two TPs on separate sub-circuits can have

the same impact on sub-circuit fault coverage (e.g., +10%), but one sub-circuit may have more

faults than the other, thus making the sub-circuit with more faults the better choice. If a TP will

decrease the number of faults detected (by masking faults), the label is a negative number.

Using the change in the number of faults detected in a sub-circuit, as opposed to the number

of faults detected in the entire circuit, poses a challenge: the quality measure may not adequately

49

represent the TP’s impact on the entire circuit. It is possible that many additional faults will be

detected in the sub-circuit but fewer faults will be detected in the overall circuit, and vice versa.

Section 6.3 explores if this potential detriment has a negative impact on fault coverage.

6.3 Experiment Results

 ANN Training Experiments

Hyperparameters greatly affect the quality of an ANN: the ANN topology (convolutional,

deep neural networks, fully/sparsely connected, etc.), the number of neurons, the number of hidden

neuron layers, activation functions, etc. Additionally, training parameters and effort significantly

influence ANN quality, e.g., step size (how much to change dendrite weight and bias magnitudes

each iteration) and initial conditions.

Given the vast parameter exploration space, this chapter shows the exploration of two

hyperparameters: training data set size and the number of ANN neurons. In these explorations, all

other hyperparameters are constant: these constant hyperparameters include neuron arrangements

(two hidden layers, with variable amounts of neurons in the first hidden and a single neuron in the

second hidden layer, and neurons using sigmoid [104] activation functions) and training

parameters (using the Adam optimization algorithm [98] with a 0.01 training step size). Training

performs 55,000 iterations for each ANN: for every ANN in this study, ANN error stops decreasing

before these iterations are complete.

Training Data Set Size

A known roadblock to previous ANN implementations is the lack of available training data

[11]: if not enough data can find a correlation between input features and desired output labels,

then creating a useful ANN is impossible. However, providing too much training data increases

50

training time and can degrade ANN quality through “overfitting [106]”. For these reasons, this

chapter explores how much data is required to minimize ANN error.

A random selection of ISCAS’85 [96] and ITC’99 [97] benchmarks serve as training

circuits. Table 6.1 lists these benchmarks, their physical qualities (the number of gates, inputs, and

outputs), and the number of randomly-extracted training samples per circuit: the number of

samples extracted per circuit is proportional to the size of each circuit. Inputs and Outputs include

the outputs and inputs of latches (respectively); since this study presumes circuits are tested in a

full-scan environment thus latches are fully observable and controllable during test. Note that that

some circuits are small and easy to test with pseudo-random stimulus; this is desirable for

generating training data, since “poor” TPs must be accurately evaluated as much as “good” TPs.

Table 6.1: Train Benchmarks for ANN TPI

Benchmarks In Out Gates Training Samples

c17 5 2 13 2

b02 5 5 32 2

b06 11 15 65 2

b08 30 25 204 4

b10 28 23 223 5

c499 41 32 275 6

c1355 41 32 619 12

b04 77 74 803 16

b12 126 127 1197 26

c2670 233 140 1566 25

c6288 32 32 2480 50

c7552 207 108 3827 72

b14_1 277 299 7145 165

b15_1 485 519 13547 311

b21_1 522 512 14932 345

b20_1 522 512 14933 342

b22_1 767 757 22507 516

b17_1 1452 1512 41080 949

b18_1 3357 3343 111802 2520

b19_1 6666 6672 226066 5087

51

Figure 6.1 shows the impact different training data sizes have on the ANN TPI targeting

SAF error. Each horizontal point corresponds to selecting a different number of randomly-selected

training samples: 2,097, 10,457 (used for training the ANNs later), 20,910, and 27,181 samples.

These amounts correspond to taking fractions of all possible sample locations: 0.1%, 0.15%, 1%,

and 1.3%, respectively. The number of neurons in the first ANN layer is always 128 neurons. The

plot labeled “training time” shows the time required to train the ANN. The plot labeled “training

error” shows the final MSE of the ANN; ideally, this is 0% (i.e., the output label obtained precisely

matches the expected label for training samples). The plot labeled “testing error” shows the MSE

for 2,244 additional randomly-selected samples that are not used for training.

Figure 6.1: Increasing ANN training data typically increases ANN accuracy, but also increases

training time.

Figure 6.1 shows three clear trends regarding ANN training time and error. As more data

trains the ANN, training requires more time to minimize ANN error. This is because minor changes

in ANN weights and biases are more likely to create errors among more training data samples.

Likewise, using more training data can increase the error, since satisfying all training samples

0

2

4

2,097 10,457 20,910 27,181

0

1000

2000

E
rr

o
r

(%
)

Training Data Set Size

A
N

N
 T

ra
in

in
g
 T

im
e

(s
)

Training time Training error Testing error

52

becomes more difficult. However, although the error of matching training data increases, the error

of matching non-training “testing” data decreases up to an acceptable point in reasonable time.

Although 20,910 training data samples decrease ANN error than 10,457 samples, using

this many samples doubles training time with a marginal impact on error. Therefore, future

experiments more than use an ANN trained with 10,457 training data samples.

ANN Complexity

Many hyperparameters impact ANN complexity, but this study simplifies complexity to a

single variable: the number of neurons present in the first hidden layer. Like the previous

experiment, Figure 6.2 gives a plot of ANN training time, training error, and testing error. 10,457

data samples train these ANNs with all other parameters matching the previous experiment.

Figure 6.2 shows, like the previous experiment, more neurons in the first layer translates

to more time needed to minimize ANN error, but training error and testing error also decrease.

This is because using more neurons can find more accurate correlations between features and

desired labels, but more neurons need more time to learn the correlation.

Figure 6.2: Increasing ANN complexity can decrease ANN error, but training time also increases.

0

2

4

32 64 128 256

0

1000

2000

E
rr

o
r

(%
)

Neurons in First Layer

A
N

N
 T

ra
in

in
g
 T

im
e

(s
)

Training time Training error Testing error

53

 ANN TPI Experiment

The experiment setup is same as in Section 4.8.1 and Section 5.7.1. The conventional TPI

targeting SAF used for comparison is from [33] and conventional TPI targeting TDF used for

comparison is modified from [33] and [93]. These conventional TP-evaluating subroutines use the

same information as the proposed ANN (i.e., COP values), so ANN can directly replace the TP-

evaluation subroutine of conventional TPI, difference in run-time and fault coverage quality is

from these subroutines.

ISCAS’85 [96] and ITC’99 [97] benchmark circuits not used for training are used for

performing TPI: this prevents a bias favoring the ANN. Table 6.2 gives details of these benchmarks.

Tests (generated from a 64-bit PRPG) generate different numbers of vectors for each benchmark

circuit: these tests obtain 95% fault coverage without TPs, apply ten thousand vectors, or take 15

minutes to simulate. This represents an industrial environment where either (1) the circuit does not

obtain 95% fault coverage without TPs and TPs are placed to increase fault coverage as much as

possible, or (2) ten thousand vectors do not obtain 95% fault coverage and TPs attempt to increase

fault coverage to acceptable levels. For this study’s original software, fault simulation may not

obtain significant fault coverage in reasonable time (e.g., b14 obtains a minuscule 13% fault

coverage in 15 minutes when applying 960 vectors), but this study presumes high-performance

industrial programming will remedy this and fault coverage trends seen in this study will apply

when simulating more vectors.

To explore the impact of ANN subcircuit sizes, this study trains several ANN models. For

larger subcircuits, the neurons in the ANN increase to capture more complex relationships between

input features and the output label. The number of neurons in each ANN model is 128 for L=2,

256 for L=3, and 512 for L=4. All other hyperparameters are identical. With all these

54

configurations, this made a total of 2*3*3=18 neural networks trained: they were trained for each

parameter of fault model (stuck-at fault and transition delay fault), test point to analyze (control-

0, control-1 and observe), and sub-circuit size to analyze.

Table 6.2: Different sub-circuit size ANN TPI and Conventional TPI Experimental Results

 Benchmark Information TPI Time(s)

Benchmarks In Out Gates Vec. TPs
Conventional

TPI

ANN

TPI

(L=3)

ANN

TPI

(L=4)

ANN

TPI(L=5)

c432 36 7 203 9984 2 13.89 0.08 0.06 0.18

c880 60 26 469 9984 4 45.45 0.08 0.07 0.8

c1908 33 25 938 9984 9 911.08 0.44 0.36 4.17

c3540 50 22 1741 9984 5 1831.23 0.66 0.53 4.39

c5315 178 123 2608 9984 6 1806.72 1.76 1.39 7.45

b03 34 34 190 9984 1 1.21 0.89 0.73 0.07

b05 35 70 1032 9984 10 727.15 1.20 1.01 5.38

b07 50 57 490 9984 4 56.16 8.76 7.14 0.86

b09 29 29 198 9984 1 2.04 5.55 4.63 0.07

b11 38 39 801 9984 3 119.14 4.37 3.73 1.16

b13 63 63 415 9984 4 9.74 7.60 12.46 0.63

b14 277 299 10343 960 1 5031.64 5.27 4.47 5.69

b15 485 519 9371 1920 1 6472.05 5.71 4.85 5.27

b17 1452 1512 33741 256 1 26607.69 11.57 9.73 15.65

b20 522 512 20716 448 1 14479.94 11.67 9.91 11.52

b21 522 512 21061 448 1 14972.79 19.80 15.87 11.86

Stuck-at Fault Coverage

These experiments find the SAF coverage of the four TPI methods: the conventional TPI

targeting SAF [33], the ANN TPI targeting SAF, the conventional TPI targeting TDF ([33], [93]),

and the ANN TPI targeting TDF. Figure 6.3 and Figure 6.4 plot the base SAF (i.e., the original

circuit with no TPs), and also plot the change in SAF coverage after TPI.

Performing SAF simulation shows several noteworthy trends. First, all ANNs consistently

obtain favorable SAF coverages, but the conventional TPI [33] sometimes (i.e., for b05) decreases

55

SAF coverage. Second, as the ANN analyzes larger sub-circuits, the ANN selects higher quality

TPs and further increases SAF coverage, presumably because TP evaluation is more accurate.

Third, as shown in Figure 6.4, it appears that methods which target SAF (both conventional and

ANNs) do not consistently perform better at increasing SAF coverage compared to delay-fault

targeting TPI: this result is counterintuitive and motivates future studies.

Figure 6.3: Different sub-circuit size ANN TPI and conventional TPI in SAF coverage

comparison.

Figure 6.4: SAF targeting conventional and ANN TPI may not increase SAF coverage compared

to their TDF targeting counterparts.

0

20

40

60

80

100

-20

-10

0

10

20

30

c4
3
2

c8
8

0

c1
9
0
8

c3
5
4
0

c5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1 B

as
e

F
au

lt
 C

o
v

er
ag

e
(%

)

∆
S

A
F

 C
o
v
er

ag
e

(%
)

Benchmarks

Conventional TPI SAF ANN TPI SAF(L=3) ANN TPI SAF(L=4)

ANN TPI SAF(L=5) Base fault coverage

-10

-5

0

5

10

15

20

25

c4
3
2

c8
8
0

c1
9
0
8

c3
5
4
0

c5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1∆

 S
A

F
 C

o
v
er

ag
e

(%
)

Benchmarks
Conventional SAF TPI SAF ANN (L=4)

56

Delay Fault Coverage

Like the previous experiment, this experiment simulates delay faults (more specifically,

TDFs) with the given number of vectors. 64-bit PRPGS load the scan chains and apply vectors

using a

Launch-off-scan method (a.k.a. “skew load”) [107]. Figure 6.5 and Figure 6.6 plot the

delay fault coverage in terms of the base delay fault coverage (i.e., the TDF coverage with no TPs)

and the change in the fault coverage with TPs inserted with different TPI methods.

The first observation from Figure 6.5 and Figure 6.6 is that all ANN TPI methods

consistently obtain favorable delay fault coverage results. On average, an ANN selects TPs that

increase fault coverage once for SAF, again for TDF more than using a heuristic. Also like the

SAF targeting ANN, the TDF targeting ANN selects higher quality test points when analyzing

larger sub-circuits.

Figure 6.5: Different sub-circuit size ANN TPI and conventional TPI in TDF coverage

comparison.

0

40

80

120

0

5

10

15

20

25

c4
3
2

c8
8
0

c1
9
0
8

c3
5
4
0

c5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

B
as

e
F

au
lt

 c
o
v
er

ag
e

(%
)

∆
T

D
F

C
o
v
er

ag
e

(%
)

Benchmarks

Conventional TPI TDF ANN TPI TDF(L=3) ANN TPI TDF(L=4)
ANN TPI TDF(L=5) Base Fault Coverage

57

Figure 6.6: TDF targeting conventional and ANN TPI may not increase TDF coverage compared

to their SAF targeting counterparts.

TPI Time

An additional result extracted from the previous experiments was the time required to

perform TPI. This is given in under the heading “TPI Time (s)” for the stuck-at fault targeting

heuristic and stuck-at fault targeting ANNs. Figure 6.7 also plots these results. This figure includes

plots for the ANNs that include the training data generation and ANN training time: these plots

distribute this time among benchmarks by circuit size (i.e., by adding more time to circuits with

more logic gates). For the ANNs with 𝐿 = 2, 𝐿 = 3, and 𝐿 = 4, this training data generation and

ANN training time is 231 + 554, 349 + 2,004, and 458 + 5,295 seconds, respectively.

The TPI time results from Table 6.2 and Figure 6.7 definitively show that performing TPI

using ANN requires orders of magnitude less time compared to conventional methods.

Additionally, as the previous results showed, fault coverages obtained with these ANNs are

comparable or superior to heuristic-derived results, which means the decreased TPI time does not

sacrifice TP quality.

-15

-10

-5

0

5

10

15

20

c4
3
2

c8
8
0

c1
9
0
8

c3
5
4
0

c5
3
1
5

b
0
3

b
0
5

b
0
7

b
0
9

b
1
1

b
1
3

b
1
4

b
1
5

b
1
7

b
2
0

b
2
1

∆
 T

D
F

 C
o
v
er

ag
e

(%
)

Benchmaks
Conventional SAF TPI SAF ANN (L=4)
Conventional TDF TPI TDF ANN (L=4)

58

Figure 6.7: Conventional TPI and different sub-circuit ANN TPI in time comparison.

When accounting for ANN training data generation and training time, the time to perform

TPI still favors ANN TPI. In industry, the EDA company trains the ANN for only once, and then

circuit developers can re-use the ANN numerous times. If developers re-use the tool enough times,

the impact of training time becomes negligible. However, when distributing the training time

among TPI instances, computational time still favors ANN TPI methods. This would represent a

technique of training specifically for a single user, which although is impractical, this still out-

performs heuristic TP evaluation.

0

1

100

10000

100 1000 10000 100000

T
P

I
T

im
e

(s
)

Gates
ANN(L=2) ANN(L=2,w/Training)

ANN(L=3) ANN(L=3,w/Training)

ANN(L=4) ANN(L=4,w/Training)

59

Chapter 7

Test Power Reduction through Test Point Insertion

7.1 Introduction

In today’s foundries, fault coverage is not the sole concern of design for test engineers;

increasing circuit density deployed in portable and high-performance microelectronic devices

make power consumption a prime concern for VLSI designers. Modern microprocessors are “hot”,

and their power consumption creates undesired consequences. Circuits become less reliable when

large and instantaneous power dissipation causes overheating: circuit failure rates roughly double

for every 10 °C increase in temperature [108].

Beyond chip functionality, excessive power during test increases manufacturing costs by

requiring more expensive chip packaging or by reducing yield [109]. During die test after wafer

etching, bare dies lack packaging with heat removal hardware, thus if bare-die testing fails to

carefully control power consumption, the test may destroy the die, thus decreasing yield and

increasing production costs. In addition to bare die testing, during wafer test, wafer probes have

current limits and high test switching activity increases power instability, this instability changes

logic states and causes false failures, thus reducing yield [110].

Studies proposed several solutions for reducing power consumption during test [111], but

all have trade-offs. Designers can use oversized power supplies, packaging, and cooling to handle

high test current, or designers can test circuits at reduced clock frequencies. However, these

solutions have shortcomings: additional test hardware increases cost, and frequency scaling

increases test time and decreases defect coverage since reduced clock frequencies will mask

dynamic faults.

60

One widely adopted form of test creates particular power concerns: LBIST. Embedding

test hardware on-circuit provides numerous advantages, ranging from easy in-field test and higher

quality at-speed test, but achieving high fault coverage for a circuit containing many random

pattern resistant faults requires high switching activity during test. Since dynamic power

dissipation in CMOS circuits is proportional to switching activity, LBIST may damage a CUT due

to excessive heat dissipation or create false failures. Therefore, a balance between high fault

coverage and low power consumption is desirable, hopefully without sacrificing one for the other.

TPs can increase circuit quality, but literature studying their impact on power is sparse.

Several studies proposed inserting TPs to reduce test power, but these studies presumed unique TP

environments that only reduce power during scan: Stefan et al. [112] placed TPs at latch outputs

to reduce average power while Sankaralingam et al. [61] reduced peak scan power, but both studies

restricted TP placement to latch outputs.

Because power issues may only appear after tape-out, engineers may require engineering

change orders (ECOs) [113] to remedy test power, but these remedies may impact fault coverage.

Like how engineers use metal-mask ECOs to address functional and timing errors found after tape-

out [113], DFT engineers may implement TPs using redundant TP hardware (i.e., unused control-

0 and control-1 gates) after they find test power issues during silicon bring-up. However, studies

must find the TPI procedures that designers must follow to reduce power without affecting test

quality under ECO environments.

Given the hazards of excessive power during test, this study used TPs to reduce both

average and peak power on existing pseudo-random tests while minimizing impacts on fault

coverage. Additionally, this study explored the impact of dividing TPI into multiple phases and

finds its impact is substantial.

61

7.2 Background

 Power and Test

Power consumption in CMOS circuits can be static or dynamic. Leakage current drawn

from power supplies cause static power, while brief short-circuit current and load capacitance

causes dynamic power. Although studies predicted static power may dominate dynamic power in

future technologies, dynamic power is still significant in modern circuits [110] and is the subject

of this study.

As system-on-chip (SoC) designs and deep-submicron geometries proliferate, larger

designs, tighter timing constraints, and higher operating frequencies affect power consumption

metrics [110]. Average power is the ratio of energy to test time. Instantaneous power is the power

consumed at any instant, usually measured as the power consumed after a synchronizing clock.

Peak power is the highest instantaneous power and determines the circuit’s electrical limits and

package requirements. If peak power exceeds the designed limit, the circuit may malfunction. This

study addresses both peak power (which may cause false failures) and average power (which may

cause overheating and circuit damage).

Historically, test engineers evaluated test strategies through area overhead, fault coverage,

test application time, test development effort, etc., but recent high-performance and low-power

devices make power management a critical parameter that test engineers cannot ignore. Power

consumption during test can be twice as high as functional power for several reasons [114]. First,

test efficiency correlates with switching activity: obtaining high fault coverage in few test vectors

requires high switching activity to excite and detect more faults. Second, test engineers use parallel

SoC testing to reduce test time, which creates parallelization not typical in functional modes. Third,

DFT circuitry is often idle during functional modes (which functional designers rely on) but is

62

active during test. Fourth, consecutive functional input vectors have a significant correlation (thus

causing low switching activity), which does not apply to consecutive test vectors [115].

Various studies provided techniques to decrease LBIST power, but they either increased

test time [116], [117] or increased the area overhead [118]–[120]. Girard et al. [118] used a PRPG

based on cellular automata to decrease switching activity during test. Girard et al. [120] modified

scan cells to suppress toggles during scan. Orno et al. [117] determined that an LFSR’s seed

influences energy consumption and selected seeds using a simulated-annealing algorithm. Andre

et al. [119] filtered out non-detecting tests to minimize switching activity. Girard et al. [116]

partitioned circuits into separately tested sub-circuits to reduce power at the cost of longer tests.

 Power Estimation

Modeling circuit power requires balancing accuracy and computation time. Analog circuit

simulators generate accurate supply voltage and current waveforms that compute power

consumption accurately (presuming an accurate technology simulation model), but such

simulations are computationally intensive. Therefore, most power estimations use logic-level

simulation [121]. The energy consumed at a node/gate 𝑖 per switch (from logic-0 to logic-1 or vice

versa) is proportional to 𝐶𝑖 ⋅ 𝑉𝐷𝐷
2 , where 𝐶𝑖 is the output capacitance of the node and 𝑉𝐷𝐷 is the

supply voltage [122]. With a node switching activity of 𝑆𝑖, the average energy consumption is 𝐸 ≈

𝐶𝑖 ⋅ 𝑆𝑖 ⋅ 𝑉𝐷𝐷
2 . The average power during test is the total energy divided by the test time 𝑇, or 𝑃𝑎𝑣𝑔 =

𝐸/𝑇, and the peak power is the highest energy consumed during any clock period. This study

further simplified average power as 𝑃𝑎𝑣𝑔 ≈ ∑ 𝑆𝑖𝑖∈𝐼 , where 𝐼 is all nodes in the circuit, this

estimation presumes minimal difference in output capacitance for each node and the time when

comparing average power is constant. Likewise, this study estimated peak power consumption as

the maximum sum of switches in any clock period.

63

 Conventional and Multi-Phase TPI

Most TPI studies presumed all control points are active in a single test phase; although this

may reduce switching activity (and power), this can negatively impact fault coverage. Figure 7.1

shows how an active control TP prevents signal transitions (thus reducing dynamic power), but

they also prevent fault effects from propagating through them [21]. Although observe points do

not create these problems, observe points cannot reduce test power since they do not influence

circuit switching activity.

Figure 7.1: Control TPs can reduce switching activity, but also block faults.

To address this shortcoming of control TPs, multi-phase TPI (MPTI) [30] utilized a

constructive divide and conquer approach. The test session was partitioned into multiple phases,

and each phase added to the coverage obtained so far. Within each phase, TPs maximally adding

to the fault coverage achieved so far were identified using a probabilistic fault simulation technique.

MTPI had several advantages: first, it made easier to predict the impact of multiple control points,

since in each phase a new control point was selected in the presence of control points selected so

far in the phase, and in this manner, a group of control points operating synergistically was enabled

TE

Control-1 TP

Activate TP

Input

Faulty Output

with TP

Stuck-at 0
Normal Output

logic

Normal Output

with TP

Faulty Outputlogic

64

within each phase; second, power dissipation during test was potentially reduced due to the usage

of fixed values of control points.

7.3 TPI for Power Reduction

 Environment

This study presumed DFT engineers had “adequate” fault coverage, but test power was too

high. This can occur if the first design iteration presents false failures during test (which designers

must remedy before the final iteration) or if power analysis predicts high test power. Presuming

redundant logic gates are available, designers can implement TPs through metal-mask ECOs,

which doesn’t apply to other power reducing DFT methods.

 Cost Function

Like other TPI studies, this study used the COP algorithm [40] to analyze a circuit’s

testability, but this study also used COP to quickly estimate a circuit’s power. COP generates

approximate testability measures by calculating each line’s controllability/𝐶𝐶 (the probably the

line is logic-0/1) and observability/𝐶𝑂 (the probability of observing the line’s value at a scannable

latch or circuit output). For a circuit with 𝑛 gates, calculating these values required 𝑂(𝑛) time.

The first step of evaluating TPs in the proposed TPI strategy was finding TPs decreased

fault coverage: this was done using Equation 2.1 in literature [8].

The second step of TPI used COP to predict each line’s switching activity. Controllability

can estimate this switching activity: if the controllability of a line is 50%, this means the line is

logic-0 half the time and logic-1 the other half, which implies it will switch frequently under

pseudo-random stimulus. (However, it is possible that consecutive logic-0/1s are highly correlated

[123] but this is left to future research.) Otherwise, if the controllability of a line is close to 100%

or 0%, this means the line will stay at 1 or 0 and seldom switches under pseudo-random stimulus.

65

The cost function for estimating stability, 𝑆𝑇, was based on all controllability values, where 𝑖 was

the number of lines in the circuit.

𝑆𝑇 = ∑ |𝐶𝐶𝑖 − 0.5|𝑖
0 7.1

 Power-Targeting TPI Algorithm

Like how other iterative TPI algorithms [33] used cost functions to determine the location

of TPs, the proposed method used the previous two cost functions to select TPs heuristically. The

TPI algorithm inserted TPs iteratively until (1) it predicted no TPs decrease power consumption,

(2) the number of TPs inserted reached a pre-designated limit, (3) the algorithm reached the

computation time limit, or (4) the algorithm obtains a desired power reduction.

Inserting a single TP was a two step-process. First, the TPI algorithm removed all TPs that

are predicted to reduced fault coverage from the candidate TP list. Using the cost function 𝐹𝐶 in

Equation 2.1, the algorithm predicted the impact each TP had on fault coverage and removed the

TPs with negative impacts from the candidate list, i.e., the algorithm removed TP 𝑡 with Δ𝐹𝐶𝑡 =

𝐹𝐶𝑡 − 𝐹𝐶 < 0 from the candidate TP list. To reduce future calculation times, after removing a TP,

the algorithm did not reinsert removed TPs into the candidate TP list, nor did the algorithm reinsert

them during future TPI phases. Second, the algorithm inserted the TP which decreased power the

most. Using the second cost function 𝑆𝑇 in Equation 7.1, the algorithm calculated the stability

before inserting any TP, then for all candidate TPs, the algorithm calculated the stability with the

TP, 𝑆𝑇𝑡. The algorithm then inserted the TP with the largest 𝑆T𝑡 = 𝑆𝑇𝑡 − 𝑆𝑇.

 Adding Multiple-Phase to the TPI Algorithm

As discussed in Section 7.2.3 MTPI may reduce the undesired fault coverage impacts of

control TPs, therefore this study incorporated MPTI techniques [30] for power-targeting TPI. Each

phase, the TPI algorithm from Section 7.3.3 inserted one or more TPs. After a phase completed,

66

fault simulation eliminated faults detected by the phase, and the TPI algorithm of future phases

included these detected faults in 𝛥𝐹𝐶 calculations. Future phases presumed previous TPs were

inactive and did not impact power or fault coverage calculations. Figure 7.2 illustrates this multi-

phased TPI procedure.

Figure 7.2: Flow chart of multi-phase TPI.

7.4 Experiment Results

 Experimental Setup

This study performed all experiments on industry-representative workstations that perform

fault simulation, power simulation, and TPI using software written explicitly for these experiments.

67

These workstations used Intel i7-8700 processors and possessed 8 GB of RAM to execute software

written in C++ and compiled using the MSVC++14.15 compiler with maximum optimization

parameters.

Experiments used post-synthesis logic netlists of the ISCAS’85 [96] and the ITC’99 [97]

benchmarks (see Table 7.1), which represented a wide range of industrial circuits. Experiments

tested circuits in a full-scan environment with scan chains loaded from a 64-bit PRPG. Table 7.1

gives the SAF coverage of a circuit with no TPs present under the column 𝐹𝐶 and the number of

vectors that obtained this fault coverage is under the label 𝑉𝑒𝑐 . This number of vectors was

determined by (1) reaching 99% fault coverage or (2) reaching a simulation time limit of 2 hours.

When performing MPTI, experiments distributed vectors evenly among each phase. (If a phase

could not be evenly divided, the last phase received additional vectors.)

All circuits in Table 7.1 obtained 99% fault efficiency (
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑎𝑙𝑙 𝑓𝑎𝑢𝑙𝑡𝑠−𝑟𝑒𝑑𝑢𝑑𝑎𝑛𝑡 𝑓𝑢𝑎𝑙𝑡𝑠
), except

for b14 and b15. Since b14 and b15’s fault efficiency was lower than 99%, experiments added

observe TPs before power-targeting TPI, which modeled designers adding observe TPs during the

LBIST design process. The algorithm from [33] inserted eleven observe TPs into b14 and sixteen

into b15, which obtained 99% fault efficiency.

68

Table 7.1: Power-Targeting TPI Experimental Results

ISCAS’85 ITC’99

Benchmarks Gates TPs Vec. SAF (%) Benchmarks Gates TPs Vec.
SAF

(%)

c432 203 2 2816 98.17 b03 190 1 9280 100.00

c499 275 2 1152 98.65 b04 803 8 42240 98.52

c880 469 4 19008 100.00 b05 1032 10 19392 77.21

c1355 619 6 2880 99.51 b07 490 4 895104 99.21

c1908 938 9 12480 99.56 b08 204 2 16320 100.00

c2670 1566 15 2905600 95.84 b09 198 1 51648 100.00

c3540 1741 17 17920 95.83 b10 223 2 8448 100.00

c6288 2480 24 1472 99.30 b11 801 8 56320 95.31

c5315 2608 26 2752 99.00 b12 1197 11 194560 99.12

c7552 3827 38 2461120 97.14 b13 415 4 7040 96.04

 b14 10343 5 200832 91.03

 b15 9371 5 45376 82.88

During TPI, equations from Section 7.3.2 estimated average and peak power, but logic

simulation provided final power values through true switching activity. Output capacitance 𝐶𝑖 and

power supply voltage 𝑉𝐷𝐷 were technology-dependent, thus this simulation omitted them from the

energy calculation presuming (1) all nodes had the same power supply voltage (which is typical)

and (2) an average load capacitance fairly represented all nodes. This calculation does not give a

true power or energy, but the relative change in switching activity can compare two TPI methods.

 Power-targeting TPI vs. Fault-targeting TPI

This first experiment performed TPI twice with a single phase of TPI; one TPI instance

maximized fault coverage as the cost function while the other minimized switching activity. This

experiment compared the resulting SAF coverage, average power reduction, and peak power

reduction of post-TPI circuits compared to the original circuit. Each TPI instance limited the

number of TPs to 1% of the total number of nodes.

69

Figure 7.3 plots the change in SAF coverage of the two TPI methods, which shows

interesting trends. First, fault coverage always decreased after TPI. Second, using power-targeting

TPI did not appear to have a clearly (un)favorable impact on SAF coverage compared to its

traditional counterpart; considering all benchmark circuits, there was no clear benefit to using one

method over the other to increase (which never occurred) or minimize the negative impacts on

fault coverage. This last trend was counterintuitive given fault-targeting TPI was specifically

trying to increase fault coverage.

Figure 7.3: Power-targeting TPI and conventional fault-targeting TPI in SAF coverage

comparison.

Figure 7.4 plots the change in switching activity (which in this experiment was analogous

to dynamic power) obtained by the two TPI methods, which again shows many interesting trends.

First, almost all benchmark circuits had a substantial reduction in switching activity with both TPI

methods, especially c7552 which achieved a 69% average power reduction. Second, compared to

fault-targeting TPI, the power reduction of the power-targeting TPI outperformed stuck-at fault-

targeting TPI for every benchmark. Given SAF trends from Figure 7.3, it appears the consistent

-100%

-50%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
S

A
F

 C
o
v
er

ag
e

(%
)

Fault-Targeting TPI Power-Targeting TPI

70

power-reducing benefits of power-targeting TPI did not come at the expense of further reduced

fault coverage, although reduced fault coverage by both methods needs must be addressed. This

experiment also observed the effect of TPI on peak power in Figure 7.5. Trends on peak power

were identical to that of average power.

Figure 7.4: Power-targeting TPI and conventional fault-targeting TPI in average power

comparison.

Figure 7.5: Power-targeting TPI and conventional fault-targeting TPI in peak power comparison.

-80.0%

-40.0%

0.0%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
A

v
er

ag
e

P
o
w

er
 (

%
)

Fault-Targeting TPI Power-Targeting TPI

-90%

-60%

-30%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
P

ea
k
 P

o
w

er
 (

%
)

Fault-Targeting TPI Power-Targeting TPI

71

From these results, power-targeting TPI clearly gave consistent improvements to average

power and peak power reduction compare to fault-targeting TPI. However, the fault coverage

obtained through TPI decreased dramatically, which was not acceptable for post-tape-out TPI.

However, using multiple phases of TPI may remedy this.

 Multiple Phase of TPI

This second experiment examined how multiple phases of TPI effects SAF coverage,

average power, and peak power. This experiment performed TPI using two, three, and four TP

phases. These TPI instances used the same limits of the first experiment and inserted the same

number of TPs, but when TPI could not divide the total number of TPs evenly among phases, TPI

inserted additional TPs into later phases. The first sub-set of experiments (Figure 7.6, Figure 7.7

and Figure 7.8) only observes the utility of power-targeting TPI: whether this utility held when

comparing against conventional fault-targeting TPI is shown in the next sub-set of experiments

(Figure 7.9, Figure 7.10 and Figure 7.11).

Figure 7.6 shows the SAF coverage of the power-targeting TPI when using multiple phases.

Unlike when using a single phase of TPI, the fault coverage of using multiple phases did not always

decrease, which confirmed the motivation for using multiple phases of TPI. Second, it appeared

using more phases TPI further increased fault coverage, which dramatically showed itself in a few

benchmarks (c2670 and b15). In particular, moving from two to three phases of TPI provided the

greatest consistent improvement.

Figure 7.7 shows the average power of the power-targeting TPI with multiple phases, and

the impact of using more phases of TPs is clear: using more phases negated power reductions. The

experiment result trends were similar in peak power, shown in Figure 7.8.

72

When combining the results of Figure 7.6, Figure 7.7 and Figure 7.8, it’s clear that DFT

engineers should attempt to address power issues with as few TPI phases as possible: adding more

phases minimized undesirable impacts on fault coverage, but additional phases simultaneously

negated impact on circuit power. This experiment found a “sweet spot” of three phases, but this

experiment left finding whether this value had an analytical backing to future research.

Figure 7.6: The number of phases impacts SAF coverage substantially.

Figure 7.7: More TPI phases, the benefits to average power degrade.

-7% -9% -41% -19%-18% -28% -10% -30% -12%
-3%

-1%

1%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5

5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
S

A
F

 C
o
v
er

ag
e

(%
)

2 sets 3 sets 4 sets

-50%

-40%

-30%

-20%

-10%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3

5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
A

v
er

ag
e

P
o
w

er
 (

%
)

2 sets 3 sets 4 sets

73

Figure 7.8: More TPI phases, the benefits to peak power degrade.

To compare fault-targeting TPI and power-targeting TPI in multiple phases, Figure 7.9

shows the SAF coverage obtained when using three phases of TPI with both power-targeting TPI

and conventional fault-targeting TPI. The results were interesting: although one would expect

fault-targeting TPI obtaining higher fault coverages, there was no clear trend in the data indicating

this (although extreme results favor fault-targeting TPI).

However, combining the effect on average power (shown in Figure 7.10) with previous

results showed a clear benefit to power-targeting TPI: despite power-targeting TPI did not perform

significantly worse in terms of fault coverage, it clearly reduced power more consistently. The

same trend in peak power is shown in Figure 7.11.

-40%

-30%

-20%

-10%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
P

ea
k
 P

o
w

er
 (

%
)

2 sets 3 sets 4 sets

74

Figure 7.9: The SAF coverage of power-targeting TPI and conventional fault-targeting TPI in

three phases.

Figure 7.10: The average power of power-targeting TPI and conventional fault-targeting TPI in

three phases.

-3%

-1%

1%

3%

5%

7%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
S

A
F

 C
o
v
er

ag
e

(%
)

Fault-Targeting TPI Power-Targeting TPI

-25%

-20%

-15%

-10%

-5%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3

5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
A

v
er

ag
e

P
o
w

er
 (

%
)

Fault-Targeting TPI Power-Targeting TPI

75

Figure 7.11: The peak power of power-targeting TPI and conventional fault-targeting TPI in

three phases.

7.5 Conclusion and Future Directions

This chapter has demonstrated the effectiveness of using TPI for reducing power during

test and the need to use multiple phases of TPI. This chapter has shown power-targeting TPI can

effectively reduce average and peak power compared to conventional fault-targeting TPI without

negatively impacting fault coverage in ECO environments, but to do so, TPI needs multiple phases

and designers must resist using too many phases of TPI.

Many future research directions are left unexplored. First, studies show fault and power-

estimating cost functions may be inaccurate for many circuits [99], but alternative computation

methods like neural networks may achieve fast and accurate power estimations, and thus may

obtain better power reductions and higher fault coverages in less computation time. Second, this

chapter presumed TPI can only use control TPs, but if power reduces enough, observe TPs can

“top off” power-reducing control TPs to further increase fault coverage.

-40%

-30%

-20%

-10%

0%

c4
3
2

c4
9
9

c8
8
0

c1
3
5
5

c1
9
0
8

c2
6
7
0

c3
5
4
0

c6
2
8
8

c5
3
1
5

c7
5
5
2

b
0
3

b
0
4

b
0
5

b
0
7

b
0
8

b
0
9

b
1
0

b
1
1

b
1
2

b
1
3

b
1
4

b
1
5

Δ
P

ea
k
 P

o
w

er
 (

%
)

Fault-Targeting TPI Power-Targeting TPI

76

Chapter 8

Conclusion and Future Work

This dissertation presented novel TPI applications that aim for fault coverage increases or

power reductions. In order to increase SAT and TDF coverage by inserting TPs, ANNs were used

for selecting TPs. These ANNs used circuit information as input features and were trained to

predict the impact of TP quality. Once the ANN was trained, it was applied to new circuits without

retraining. Compared against conventional TPI, ANN-based TPI obtained better or similar results

in less time.

TPI for reducing power was based on a cost function of TP switching activity and MPTI

was added to reduce negative impacts of control TP on fault coverage. Compared to fault-targeting

TPI, power-targeting TPI can effectively reduce average and peak power without impacting fault

coverage.

Several future directions are waiting exploration. First, an ANN can be used for TPI power

reduction. Using an ANN for TPI successfully increased fault coverage, and this motivates using

an ANN for power reduction. Second, TPI can use the latest machine learning algorithms; ANNs

are one type of machine learning, but there are other machine learning algorithms, e.g., reinforced

learning [124] and unsupervised learning [125]. As machine learning algorithms become stronger,

the latest algorithms will achieve better results faster. Third, ANNs can be used for other DFT

problems, like memory test; the advantage of ANNs is their ability to learn, and ANNs can find

correlations of features in a circuit and predict the results. For complex DFT problems, ANN can

be trained by previous solutions and find answers for new problem.

77

Bibliography

[1] B. L. Keller and T. J. Snethen, “Built-in Self-test Support in the IBM Engineering Design

System,” IBM J. Res. Dev., vol. 34, no. 2.3, pp. 406–415, Mar. 1990.

[2] P. Bardel and W. McAnney, “Self-testing of Multichip Logic Modules,” in Proc.

International Test Conference, Philadelphia, PA, Nov. 1982, pp. 200–204.

[3] E. B. Eichelberger and E. Lindbloom, “Random-Pattern Coverage Enhancement and

Diagnosis for Lssd Logic Self-Test.,” IBM J. Res. Dev., vol. 27, no. 3, pp. 265–272, May

1983.

[4] I. Pomeranz and S. M. Reddy, “3-Weight Pseudo-Random Test Generation Based on a

Deterministic Test Set for Combinational and Sequential Circuits,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 12, no. 7, pp. 1050–1058, Jul. 1993.

[5] E. J. Mccluskey, “Built-In Self-Test Techniques,” in IEEE Design & Test of Computers,

vol. 2, no. 2, pp. 21-28, Apr. 1985.

[6] J. P. Hayes and A. D. Friedman, “Test Point Placement to Simplify Fault Detection,” IEEE

Trans. Comput., vol. 100, no. 7, pp. 727–735, Jul. 1974.

[7] A. Briers and K. Totton, “Random Pattern Testability by Fast Fault Simulation,” in

Proceeding IEEE International Test Conference, Washington, D.C., Sep. 1986, pp. 274–

281.

[8] M. J. Geuzebroek, J. T. Van Der Linden, and a. J. Van De Goor, “Test Point Insertion that

Facilitates ATPG in Reducing Test Time and Data Volume,” in Proceedings. International

Test Conference, Baltimore, MD, Dec. 2002, pp. 138–147.

78

[9] M. J. Geuzebroek, J. T. Van Der Linden, and a. J. Van De Goor, “Test Point Insertion for

Compact Test Sets,” in Proc. International Test Conference, Atlantic City, NJ, Oct. 2000,

pp. 292–301.

[10] N. A. Touba and E. J. Mccluskey, “Test Point Insertion Based on Path Tracing,” in

Proceedings 14th VLSI Test Symposium, Princeton, NJ, Apr. 1996, pp. 2–8.

[11] M. Chern et al., “Improving Scan Chain Diagnostic Accuracy using Multi-stage Artificial

Neural Networks,” in Proceedings of the 24th Asia and South Pacific Design Automation

Conference, New York, NY, Jan. 2019, pp. 341–346.

[12] L. R. Gómez and H.-J. Wunderlich, “A Neural-network-based Fault Classifier,” in 2016

IEEE 25th Asian Test Symposium (ATS), Hiroshima, Japan, Nov. 2016, pp. 144–149.

[13] M. Youssef, Y. Savaria, and B. Kaminska, “Methodology for Efficiently Inserting and

Condensing Test Points,” in IEEE Proceedings (Computers and Digital Techniques), vol.

140, no. 3, pp. 154-160, 1993.

[14] Y. Sun and S. K. Millican, “A Survey: Test Point Insertion in LBIST,” in IEEE VLSI Test

Symposium, San Diego, CA, Apr. 2020, pp. 1–6.

[15] J. Yang and N. A. Touba, “Test Point Insertion with Control Points Driven by Existing

Functional Flip-Flops,” IEEE Trans. Comput., vol. 61, no. 10, pp. 1473–1483, Oct. 2012.

[16] J. R. Fox, “Test-Point Condensation in the Diagnosis of Digital Circuits.,” Proc. Inst.

Electr. Eng., vol. 124, no. 2, pp. 89–94, Feb. 1977.

[17] H. Ren, M. Kusko, V. Kravets, and R. Yaari, “Low Cost Test Point Insertion without Using

Extra Registers for High Performance Design,” in International Test Conference, Austin,

TX, Nov. 2009, pp. 1–8.

79

[18] D. V Bakshi, M. S. Hsiao, and S. K. Shukla, “Techniques for Seed Computation and

Testability Enhancement for Logic Built-In Self Test,” 2012.

[19] Y. Fang and A. Albicki, “Efficient Testability Enhancement for Combinational Circuit,”

in VLSI in Computers and Processors, Austin, TX, Oct. 1995, pp. 168–172.

[20] P. Chan et al., “An Observability Enhancement Approach for Improved Testability and At-

speed Test,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 13, no. 8, pp.

1051–1056, Aug. 1994.

[21] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random Pattern Delay

Fault Coverage Using Inversion Test Points,” in IEEE 28th North Atlantic Test Workshop

(NATW), Burlington, VT, May 2019, pp. 206–211.

[22] K. Juretus and I. Savidis, “Reducing Logic Encryption Overhead Through Gate Level Key

Insertion,” in IEEE International Symposium on Circuits and Systems (ISCAS), Montreal,

Canada, May 2016, pp. 1714–1717.

[23] H. Vranken, F. S. Sapei, and H. J. Wunderlich, “Impact of Test Point Insertion on Silicon

Area and Timing during Layout,” Proc. - Des. Autom. Test Eur. Conf. Exhib., Paris, France,

Feb. 2004, pp. 810–815.

[24] J. Yang, B. Nadeau-dostie, N. A. Touba, M. Drive, T. Floor, and S. Jose, “Test Point

Insertion Using Functional Flip-Flops to Drive Control Points,” in International Test

Conference, Austin, TX, Nov. 2009, pp. 1–10.

[25] M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima, and S. Terada, “Low Overhead Test

Point Insertion for Scan-based BIST,” in International Test Conference, Atlantic City, NJ,

Sep. 1999, pp. 348–357.

80

[26] F. Muradali and R. Janusz, “A Self-Driven Test Structiure for Pseudorandom Testing of

Non-Scan Sequential Circuits,” in Proc. 14th VLSI Test Symposium. IEEE, Princeton, NJ,

Apr. 1996, pp. 17–25.

[27] J. Yang, B. Nadeau-dostie, N. A. Touba, and S. Jose, “Reducing Test Point Area for BIST

through Greater Use of Functional Flip-Flops to Drive Control Points,” in 24th IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, Chicago, IL,

Oct. 2009, pp. 20–28.

[28] K. Chang, J. R. Jiang, and C. J. Liu, “Reducing Test Point Overhead with Don ’ t-Cares,”

in IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS),

Boise, ID, Aug. 2012, pp. 534–537.

[29] N. Z. Basturkmen, S. M. Reddy, and J. Rajski, “Improved Algorithms for Constructive

Multi-phase Test Point Insertion for Scan Based BIST,” in Asia and South Pacific Design

Automation Conference, Bangalore, India, Jan. 2002, pp. 604–611.

[30] N. Tamarapalli and J. Rajski., “Constructive Multi-phase Test Point Insertion for Scan-

based BIST,” in Proceedings International Test Conference. Test and Design Validity,

Washington, DC, Oct. 1996, pp. 649–658.

[31] B. Krishnamurthy and T. Laboratories, “A Dynamic Programming Approach to the Test

Point Insertion Problem,” in Proc. the 24th ACM/IEEE Design Automation Conference,

Miami Beach, FL, Jun. 1987, pp. 695–705.

[32] J. Sziray, “Test Generation and Computational Complexity,” Proc. IEEE Pac. Rim Int.

Symp. Dependable Comput. PRDC, Pasadena, CA, Dec. 2011, pp. 286–287.

81

[33] H.-C. Tsai, C.-J. Lin, S. Bhawmik, and K.-T. Cheng, “A Hybrid Algorithm for Test Point

Selection for Scan-based BIST,” in Proceeding the 34th annual conference on Design

automation conference, Anaheim, CA, Jun. 1997, pp. 478–483.

[34] P. Nigh and A. Gattiker, “Test Method Evaluation Experiments and Data,” in Proceedings

International Test Conference, Atlantic City, NJ, Oct. 2000, pp. 454–463.

[35] Y. Ma et al., “High Performance Graph Convolutional Networks with Applications in

Testability Analysis,” in Proceedings of the 56th Annual Design Automation Conference,

Las Vegas, NV, Jun.2019, pp. 1–6.

[36] V. S. Iyngar and D. Brand, “Synthesis of Pseudo-Random Pattern Testable Designs,” in

International Test Conference, Washington, DC, Aug. 1989, pp. 501–508.

[37] T. Ramakrishnan and L. Kinney, “Extension of the Critical Path Tracing Algorithm,” in

27th ACM/IEEE Design Automation Conference, Orlando, FL, Jun. 1990, pp. 720–723.

[38] P. Menon, Y. Levendel, and M. Abramovici, “SCRIPT: A Critical Path Tracing Algorithm

for Synchronous Sequential Circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 10, no. 6, pp. 738–747, Jun. 1991.

[39] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia Controllability/Observability

Analysis Program,” in 17th Design Automation Conference, Minneapolis, MN, Jun. 1980,

pp. 190–196.

[40] F. Brglez, “On Testability Analysis of Combinational Networks,” in Proceedings - IEEE

International Symposium on Circuits and Systems, Jan. 1984, vol. 1, pp. 705–712.

[41] H. Tsai, S. Member, and K. T. Cheng, “Efficient Test-Point Selection for Scan-Based

BIST,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 6, no. 4, pp. 667–676, Dec.

1998.

82

[42] R. Lisanke, F. Brglez, A. J. Degeus, and D. Gregory, “Testability-Driven Random Test-

Pattern Generation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 6, no. 6,

pp. 1082–1087, Nov. 1987.

[43] P. Bist, C. Lin, and T. B. Labs, “Timing-Driven Test Point Insertion for Full-Scan and

Partical-Scan BIST,” in Proc. IEEE International Test Conference, Washington, DC, Oct.

1995, pp. 506–514.

[44] M. Nakao and K. Hatayama, “Accelerated Test Points Selection Method for Scan-Based

BIST,” Proc Sixth Asian Test Symp., vol. 2, pp. 359–364, Nov. 1997.

[45] B.H.Seiss, “Test Point Insertion for Scan-Based BIST,” in Proceedings European Test

Conference,Munich, German, Apr. 1991, pp. 253–262.

[46] Y. Savaria, M. Youssef, B. Kaminska, and M. Koudil, “Automatic Test Point Insertion for

Pseudo-random Testing,” in IEEE International Sympoisum on Circuits and Systems,

Singapore, Jun. 1991, pp. 1960–1963.

[47] M. He, G. K. Contreras, M. Tehranipoor, D. Tran, and L. R. Winemberg, “Test-point

Insertion Efficiency Analysis for LBIST Applications,” Proc. IEEE VLSI Test Symp., Las

Vegas, NV, Apr. 2016, pp. 1–6.

[48] M. He et al., “Test-Point Insertion Efficiency Analysis for LBIST in High-Assurance

Applications,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 25, no. 9, pp. 2602–

2615, Jun. 2017.

[49] M. J. Chen and D. Xiang, “Pseudorandom Scan BIST using Improved Test Point Insertion

Techniques,” in International Conference on Solid-State and Integrated Circuits

Technology Proceedings (ICSICT), Beijing, China, Oct. 2004, pp. 2043–2046.

83

[50] R. Sethuram, S. Wang, S. T. Chakradhar, and M. L. Bushnell, “Zero Cost Test Point

Insertion Technique to Reduce Test Set Size and Test Generation Time for Structured

ASICs,” in 15th Asian Test Symposium, Fukuoka, Japan, Nov. 2006, pp. 339–348.

[51] C. Acero et al., “Embedded Deterministic Test Points,” IEEE Trans. Very Large Scale

Integr. VLSI Syst., vol. 25, no. 10, pp. 2949–2961, Jul. 2017.

[52] E. Moghaddam, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J. Zawada, “Logic BIST

with Capture-Per-Clock Hybrid Test Points,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 38, no. 6, pp. 1028–1041, May 2019.

[53] G. L. Smith and P. Box, “Model for Delay Faults Based upon Paths,” in Proc. IEEE

International Test Conference-(ITC), Philadelphia, PA, Nov. 1985, pp. 342–351.

[54] I. Pomeranz, S. M. Reddy, and I. City, “An Efficient Non-Enumerative Method to Estimate

Path Delay Fault Coverage,” in IEEE/ACM International Conference on Computer-Aided

Design, Santa Clara, CA, Nov. 1992, pp. 560–567.

[55] I. Pomeranz and S. M. Reddy, “On the Number of Tests to Detect all Path Delay Faults in

Combinational Logic Circuits,” IEEE Trans. Comput., vol. 45, no. 1, pp. 50–62, Jan. 1996.

[56] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 6, no. 5, pp. 694–703, Sep. 1987.

[57] S. Tragoudas and N. Denny, “Testing for Path Delay Faults Using Test Points,” in Proc.

IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.,

Albuquerque, NM, Nov. 1999, pp. 86–94.

[58] I. Pomeranz, S. Member, and S. M. Reddy, “Design-for-Testability for Path Delay Faults

in Large Combinational Circuits Using Test Points,” IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst., vol. 17, no. 4, pp. 333–343, Apr. 1998.

84

[59] P. Uppduri, U. Sparmann, and I. Pomeranz, “On Minimizing the Number of Test Points

Needed to Achieve Complete Robust Path Delay Fault Testability,” in Proc. 14th VLSI

Test Symposium. IEEE, Princeton, NJ, Apr. 1996, pp. 288–295.

[60] U. Sparmann, D. Luxenburger, K. Cheng, and S. M. Reddy, “Fast Identification of Robust

Dependent Path Delay Faults,” in 32nd Design Automation Conference, San Francisco, CA,

Jun. 1995, pp. 119–125.

[61] R. Sankaralingam and N. Touba, “Inserting Test Points to Control Peak Power During Scan

Testing,” in 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems., Vancouver, Canada, Nov. 2002, pp. 138–146.

[62] S. Gerstendörfer and H.-J. Wunderlich, “Minimized Power Consumption For Scan-Based

Bist,” in IEEE International Test Conference, Atlantic City, NJ, Sep. 1999, pp. 203–212.

[63] E. G. Ulrich, V. D. Agrawal, and J. H. Arabian, Concurrent and Comparative Discrete

Event Simulation. Springer Science & Business Media, 1993.

[64] J. A. Tofte and H. Rahmanian, “An Effort-Minimized Logic BIST Implementation

Method,” in Proc. International Test Conference, Baltimore, MD, Nov. 2001, pp. 1002–

1010.

[65] S. Roy, B. Laboratories, and K. T. Cheng, “Efficient Test Mode Selection & Insertion for

RTL-BIST,” in Proc. International Test Conference, Atlantic City, NJ, Oct. 2000, pp. 263–

272.

[66] H. Vranken, F. Meister, and H. Wunderlich, “Combining Deterministic Logic BIST with

Test Point Insertion,” in Proc. The Seventh IEEE European Test Workshop, Corfu, Greece,

May 2002, pp. 105–110.

[67] N. Gupta, “Artificial neural network,” Netw. Complex Syst., vol. 3, no. 1, pp. 24–28, 2013.

85

[68] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad,

“State-of-the-art in Artificial Neural Network Applications: A Survey,” Heliyon, vol. 4, no.

11. Elsevier Ltd, p. e00938, Nov. 2018.

[69] W. S. Sarle, “Neural Networks and Statistical Models,” 1994.

[70] W. McCulloch and W. Pitts, Automata Studies. 1956.

[71] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. Taylor &

Francis, 2005.

[72] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Harvard University, 1975.

[73] S. Dreyfus, “The Computational Solution of Optimal Control Problems with Time Lag,”

Trans. Autom. Control, vol. 18, no. 4, pp. 383–385, Aug. 1973.

[74] T. S. Huang. Weng, John Juyang Narendra Ahuja, “Learning Recognition and

Segmentation using the Cresceptron,” Int. J. Comput. Vis., vol. 25, no. 2, pp. 109–143,

Nov. 1997.

[75] A. Zell, Simulation Neuronaler Netze. 1994.

[76] P. Ramachandran and B. Zoph, “Searching for Activation Functions,” CORR, 2017.

[77] Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu, “Credit Rating Analysis with

Support Vector Machines and Neural Networks: a Market Comparative Study,” Decis.

Support Syst., vol. 37, no. 4, pp. 543–558, Sep. 2004.

[78] J. M. Binner, C. T. Elger, B. Nilsson, and J. A. Tepper, “Predictable Non-linearities in U.S.

Inflation,” Econ. Lett., vol. 93, no. 3, pp. 323–328, Sep. 2006.

[79] F. A. de Oliveira, C. N. Nobre, and L. E. Zárate, “Applying Artificial Neural Networks to

Prediction of Stock Price and Improvement of the Directional Prediction Index – Case

86

Study of PETR4, Petrobras, Brazil,” Expert Syst. Appl., vol. 40, no. 18, pp. 7596–7606,

Dec. 2013.

[80] Z. F. Wang, J.-L. Zarader, and S. Argentieri, “Aircraft Fault Diagnosis and Decision

System based on Improved Artificial Neural Networks,” in IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, Jul. 2012,

pp. 1123–1128.

[81] X. Lan, C. Qin, Y. Liu, H. Ouyang, and G. Liu, “Intelligent Guidance of Autonomous

Mobile Robots based on Adaptive Dynamic Programming,” in 34rd Youth Academic

Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, Jun.

2019, pp. 695–699.

[82] L. Jin, S. Li, J. Yu, and J. He, “Robot Manipulator Control using Neural Networks: A

Survey,” Neurocomputing, vol. 285, pp. 23–34, Apr. 2018.

[83] A. Alghoul, S. Al Ajrami, G. Al Jarousha, G. Harb, and S. S. Abu-Naser, “Email

Classification using Artificial Neural Network,” International Journal of Academic

Engineering Research (IJAER), vol. 2, no. 11, pp. 8–14, Dec. 2018.

[84] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural

Architectures for Named Entity Recognition,” ArXiv Prepr. ArXiv160301360, May 2016.

[85] K. Wołk and K. Marasek, “Neural-based Machine Translation for Medical Text Domain.

Based on European Medicines Agency Leaflet Texts,” Procedia Comput. Sci., vol. 64, pp.

2–9, Oct. 2015.

[86] E. Sipos and L.-N. Ivanciu, “Failure Analysis and Prediction using Neural Networks in the

Chip Manufacturing Process,” in 40th International Spring Seminar on Electronics

Technology (ISSE), Sofia, Bulgaria, May 2017, pp. 1–5.

87

[87] D. Guerra, A. Canelas, R. Póvoa, N. Horta, N. Lourenço, and R. Martins, “Artificial Neural

Networks as an Alternative for Automatic Analog IC Placement,” in 16th International

Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to

Circuit Design (SMACD), Lausanne, Switzerland, Jul. 2019, pp. 1–4.

[88] J. P. Janet and H. J. Kulik, “Predicting Electronic Structure Properties of Transition Metal

Complexes with Neural Networks,” Chem. Sci., vol. 8, no. 7, pp. 5137–5152, 2017.

[89] S. Roy, S. K. Millican, and V. D. Agrawal, “Unsupervised Learning in Test Generation for

Digital Integrated Circuits,” 2021.

[90] S. Roy, S. K. Millican, and V. D. Agrawal, “Machine Intelligence for Efficient Test Pattern

Generation,” in IEEE International Test Conference (ITC), Washington, DC, Nov. 2020,

pp. 1–5.

[91] Y. Sun and S. Millican, “Test Point Insertion Using Artificial Neural Networks,” in IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, Jul. 2019, pp. 253–

258.

[92] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory and

mixed-signal VLSI circuits, vol. 17. Springer Science & Business Media, 2004.

[93] S. Ghosh, S. Bhunia, A. Raychowdhury, and K. Roy, “A Novel Delay Fault Testing

Methodology using Low-overhead Built-in Delay Sensor,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 25, no. 12, pp. 2934–2943, Nov. 2006.

[94] S. Haykin, Neural Networks and Learning Machines. Pearson Education India, 2010.

[95] H. Choset and P. Pignon, “Coverage Path Planning: The Boustrophedon Cellular

Decomposition BT - Field and Service Robotics,” 1998, pp. 203–209.

88

[96] F. Brglez and H. Fujiwara, “A Neural Netlist of 10 Combinational Benchmark Designs and

a Special Translator in Fortran,” in Proc. of International Symposium on Circuits and

Systems, KYOTO, Japan, Jun. 1985, pp. 669.

[97] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 Benchmarks and first ATPG

Results,” IEEE Des. Test Comput., vol. 17, no. 3, pp. 44–53, Jul. 2000.

[98] D. P. Kingma and J. L. Ba, “ADAM: a Method for Stochastic Optimization,” ArXiv Prepr.

ArXiv14126980, Dec. 2015.

[99] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural Networks to Delay

Fault Testing : Test Point Insertion and Random Circuit Training,” in IEEE 28th Asian Test

Symposium (ATS), Kolkata, India, Dec. 2019, pp. 13–15.

[100] O. Bula, J. Moser, J. Trinko, M. Weissman, and F. Woytowich, “Gross Delay Defect

Evaluation for a CMOS Logic Design System Product,” IBM J. Res. Dev., vol. 34, no. 2.3,

pp. 325–338, Mar. 1990.

[101] P. C. Maxwell, R. C. Aitken, V. Johansen, and I. Chiang, “The Effectiveness of IDDQ,

Functional and Scan Tests: How Many Fault Coverages Do We Need?,” in Proceedings of

the IEEE International Test Conference on Discover the New World of Test and Design,

Washington, DC, Sep. 1992, pp. 168–177.

[102] A. Krstic and K.-T. T. Cheng, Delay Fault Testing for VLSI Circuits, Springer Science &

Business Media, 2012.

[103] J. Mahmod, S. Millican, U. Guin, and V. Agrawal, “Special Session: Delay Fault Testing-

present and Future,” in IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, Apr. 2019,

pp. 1–10.

89

[104] A. Menon, K. Mehrotra, C. K. Mohan, and S. Ranka, “Characterization of a Class of

Sigmoid Functions with Applications to Neural Networks,” Neural Netw., vol. 9, no. 5, pp.

819–835, Jul. 1996.

[105] T. W. Williams, “Test Length in a Self-testing Environment,” IEEE Des. Test Comput.,

vol. 2, no. 2, pp. 59–63, Apr. 1985.

[106] G. N. Karystinos and D. A. Pados, “On Overfitting, Generalization, and Randomly

Expanded Training Sets,” IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1050–1057, Sep.

2000.

[107] J. Savir, “Skewed-load Transition Test: Part I, calculus,” in Proceedings International Test

Conference, Baltimore, MD, Sep. 1992, pp. 705.

[108] C. H. Small, “Shrinking Devices Put the Squeeze on System Packaging,” EDN, vol. 39, no.

4, pp. 41–54, 1994.

[109] J. Lee and N. A. Touba, “LFSR-Reseeding Scheme Achieving Low-Power Dissipation

During Test,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp.

396–401, Jan. 2007.

[110] P. Girard, “Survey of Low-Power Testing of VLSI Circuits,” IEEE Des. Test Comput., vol.

19, no. 3, pp. 82–92, Aug. 2002.

[111] J. Monzel et al., “Power Dissipation during Testing: Should We Worry About it?,” in Panel

Session, IEEE VLSI Test Symposium, Hyderabad, India, Jan. 1997, pp. 456–457.

[112] G. Stefan and W. Hans-Joachim, “Minimized Power Consumption for Scan-based BIST,”

J. Electron. Test., vol. 16, no. 3, pp. 203–212, Jun. 2000.

90

[113] K.-H. Ho, J.-H. R. Jiang, and Y.-W. Chang, “TRECO: Dynamic Technology Remapping

for Timing Engineering Change Orders,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 31, no. 11, pp. 1723–1733, Oct. 2012.

[114] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI Devices,” in Digest of

Papers Eleventh Annual IEEE VLSI Test Symposium, Atlantic City, NJ, Apr. 1993, pp. 4–

9.

[115] S. Wang and S. K. Gupta, “DS-LFSR : A New BIST TPG for Low Heat Dissipation,” in

Proceedings International Test Conference, Washington, DC, Nov. 1997, pp. 848–857.

[116] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, and M. C. France, “Low Power

BIST Design by Hypergraph Partitioning : Methodology and Architectures,” in

Proceedings International Test Conference, Atlantic City, NJ, Oct. 2000, pp. 652–661.

[117] F. C. Orno, M. R. Ebaudengo, M. S. O. R. Eorda, G. S. Quillero, M. V Iolante, and P.

Torino, “Low Power BIST via Non-Linear Hybrid Cellular Automata,” in Proceedings

18th IEEE VLSI Test Symposium., Montreal, Canada, Apr. 2000, pp. 29–34.

[118] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, and M. C. France, “A Test Vector

Inhibiting Technique for Low Energy BIST Design,” in Proceedings 17th IEEE VLSI Test

Symposium, Dana Point, CA, Apr. 1999, pp. 407–412.

[119] H. Andre and W. Hans-Joachim, “Low Power Serial Built-In Self-Test,” in Proceedings

3rd European Test Workshop, IEEE, 1998, pp. 49–53.

[120] P. Girard et al., “Low-Energy BIST Design : Impact of the LFSR TPG Parameters on the

Weighted Switching Activity,” in Proceedings the IEEE International Symposium on

Circuits and Systems VLSI, Orlando, FL, May 1999, pp. 110–113.

91

[121] R. Tjarnstrom, “Power Dissipation Estimate by Switch Level Simulation,” in Proceedings

IEEE International Symposium on Circuits and Systems, Portland, OR, May 1989, pp. 881–

884.

[122] M. A. Cirit, “Estimating Dynamic Power Consumption of CMOS Circuits,” in Proceedings

ICCAD, Sep. 1987, pp. 534–537.

[123] F. Rashid and V. Agrawal, “Weighted Random and Transition Density Patterns for Scan-

BIST,” IEEE NATW, Woburn, MA, May 2012.

[124] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[125] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and Semi-supervised Clustering:

a Brief Survey,” Rev. Mach. Learn. Tech. Process. Multimed. Content, vol. 1, pp. 9–16,

Aug. 2004.

